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I. INTRODUCTION

I~is report presents a three-dimensional, vector, boundary element,

or surface integral moment-method formulation for scattering inside

waveguides and represents a fairly logical extension of two-dimensional

work done by S. Kagami and I. Fukai, 1 and also work by E. Tonye and H.

Baudrand.2 The method uses mode expansions in the regular waveguide of

each port, and allowance for multiple ports incurs no additional theo-

retical cost, as this is a multiport formulation. Therefore, at least

in principle, multimode multiport scattering matrix information can be

obtained. The primary restrictions are that the discontinuity boundary

be perfectly conducting and that the material filling the discontinuity

volume be homogeneous and isotropic. These restrictions may, to some

extent, be lifted.1

Other numerical schemes that produce multimode scattering data are

mode matching"'5 at abrupt transitions from one waveguide to another,

and other methods6 based upon Solymar's 7 equations for tapering transi-

tions between waveguides. These are excellent tools that have recently

been developed to the point of having practical application. Both

methods apply only to two-port transitions, and the central axis of the

two connected guides must be parallel. A boundary element formulation

overcomes these restrictions, albeit at an even more intensive computa-

tional cost.

Another approach that could be potentially more flexible than the

one described in this report would be based on finite element or finite S

difference schemes. Initially, we thought a boundary element scheme

-- €

% % %-

.. . . . ..%..



would require less computer storage to implement than a corresponding

difference approach to the same problem. This is probably true for two-

dimensional problems, but in three dimensions it is not. It turns out

that for a boundary element scheme, one needs to compute and store

coupling coefficients from every surface patch to every other surface

patch. This means the storage required is proportional to the surface

area squared or the enclosed volume to the four-thirds power, whereas a

corresponding difference approach requires storage proportional to the

volume. Without knowing the coefficients of proportionality for the two

different cases, nothing more can be said by way of comparison. It is

important to realize however that a boundary element formulation in

three dimensions does not a priori require less storage than a finite

element formulation.

An interesting and possibly less computationally intensive

approach, based on variational techniques for irregular waveguide tran- %

sitions, is presented by Bernstein, et al. 8

This work was motivated by the need for a tool capable of analyz-

ing the rapid transition from a regular waveguide to a slow wave cir-

cuit. Although the theory presented is not sufficiently well developed

to do this job, the goal was simply to develop a framework upon which

such a problem could properly be considered. This is primarily an

exposition on the theoretical and computational aspects of the boundary

element method as it applies to waveguide discontinuities. Numerical -.

results are given for a few simple but important test cases to verify

that the work given here does have substance and to demonstrate, rather

specifically, what types of computational expense to expect.

-2-



II. DERIVATION OF AN APPROPRIATE SURFACE INTEGRAL EQUATION

In this section, Green's theorem is applied to a scalar wave

function, thereby obtaining the wave function interior to a volume in

term of its boundary values. The point of evaluation is then "pushed"

to the surface of the volume by a limiting process, yielding a surface

integral equation for the wave function. It is then noted that the

electric and magnetic field intensities satisfy vector wave equations,

and that the result derived for a scalar wave function applies to the

rectangular components of these equations. Vector integral equations

are then obtained by recombining the component equations. To wrap up,

the integrand is simplified for the case when part of the boundary is

perfectly conducting.

Green's theorem,

S(*V, - *V*) • ndca -f (*V2 *  * 2 %) d3 x (1)
S V

applies on a volume V with volume element d3x, S is a closed surface

bounding V, with area element da and unit outward normal n at dc.

Take * to be a solution to the inhomogeneous wave equation,

(v2 + k2),(x) - - F(x) (2)

for all points x in the volume V. Solving for V 2 in this equation and

substituting the result into Eq. 1 gives

-3-

'r J. r'"I' .. ; '.' - .-,-', ''- .'-'. -- .- ,.: -. .-..- -. ., . - -. - -.- -.-•- . - "%.



-- 2 2- 3b j*(x)V*(x) - *(x)*(x)} • nds - - f {F(x)#(x) + *(x)[V + k ]#(x)) d x
S V

(3)

Choice of the function #(x) is quite arbitrary, but Eq. 3 indicates that

some reduction in complexity is possible by choosing * such that

(v2 + k26 - -6( -9') (4)

where *(x - x') is the Dirac delta function. In effect, take *(x) =

#(;, x') to be a "Green's function." If the geometry under considera-

tion is excessively simple, then the geometrically correct Green's

function, satisfying either Direichlet or Neumann boundary conditions,

is known explicitly. For this case, Eq. 3 reduces to the well known

result,

( f F(x)*(x,x') d x (5)
V

Usually, the physically appropriate Green's function is beyond knowing

explicitly, and so it makes sense to choose *(x, x') such that it has no

geometrical bias. Clearly, the "best" choice in this case is the free

space Green's function,

,<;, ') - tjk.;'-;l
(6)

In making this choice, it has been assumed that k is constant throughout

V. As you might have guessed, the ± sign in Eq. 6 is arbitrary. But

-4-



for eJo t time dependence, the - sign is the standard choice and the one

used here. For future reference,

v,2 k' - ...~~ + (7)

where R -x' - xl "  When Eq. 6 is used in Eq. 3 and x' is taken inside

V, the result is

3
*(I f F(;)*(;, X't) d x + i $x 'ix 1#()Vxx x') * n(;) da

V S

(8)

For x' outside V, the left-hand side of this equation is zero. Compar-

ing Eq. 8 to the result when the geometrically correct Green's function

is known (Eq. 5), we see that the price paid for not having the correct

Green's function is in the addition of a surface integral to the inte-

gral equation.

Next, the evaluation point x' in Eq. 8 is specialized to a point

on S by a limiting process that is outlined by Brebbia.3  Figure 1 is a

S

Fig. 1. Geometry for specializing ,c' to a smooth surface S.

\I.

-5-
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blown-up view depicting a small section of the smooth surface S dis-

torted outward by a small hemisphere having radius e and surface S .

The point x' is taken to be at the center of the hemisphere and on the

original surface S. That part of the original surface now displaced

by S will be referred to as A * In this geometry, x' is inside the

distorted volume, so that Eq. 8 remains valid. Now let us see what

change the terms in this equation go through in the limit as the dis-

torting radius e goes to zero. Consider the surface integration in the

far right term of Eq. 8,

lim f *(x)V(x, x') * nda + lim f *(x)V(, x') * nda
+O S-A £ o S

21T w/2 -jkc:- *(x)V*(x, x') • nde + llm f f *(xI + e; r e k + (-E)

S €+o 0 0 4 Le 2

£2e sin e de d.

- f *(x)V$(x, x') * nda - (x)

5%

.

The 1/2 $ term, resulting from the limiting process above, is the
_ .

classic result obtained when x' is specialized to any smooth point on

S. When specializing to corners or edges on S, a more general term of

the form n* is obtained, where n is between 0 and 1. The explicit value

of n can be obtained for each case by the method used here for smooth

surfaces. For edges, we have n - 8/2w, where 8 is the edge angle as

measured from outside the enclosing volume. For right angle corners,

i - 1/8 and 7/8 for inside and outside corners, respectively. Turning

-6 -
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our attention now to the two remaining integrals in Eq. 8, we see that

the limiting process produces no more new terms because the order of the

singularity in the integrands is too low in both cases. With these

results, Eq. 8 can be specialized to

3
Sf/ F(x)*(x, x,) d x + f , )V*(X) -v(;)V#(x, x)} nd

V S

(9)

where x' must now belong only to the smooth subset of points making up

S.

It was mentioned earlier that the electric and magnetic field

intensities satisfy vector wave equations. This is simple to show and,

in doing so, an important assumption is made obvious. The harmonic,

ejwt , form for Maxwell's equations is

V X m jwiil{ (10)

V xH-j+JCE (11)

For P. and e constant

v (CE) -p V E- p/ (12)

v •(PH) 0 V H o (13)

Take the curl of Eq. 11 and assume e constant,

-7-
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V x V x H-V x j + jWeV xE

Substitute for V x Kfrom Eq. 10,

x V x V x-

Use the vector identity,

V x V x H-V(V - i) - V 2i

to obtain

V(V - R) V 2j k2  - V xj

where k 2= W2 pe. Now assume constant pi and use Eq. 13 to get

V2H +kl2iH -V x (14)

The parallel result for the electric field is

V2i+ k 2i .jwa + VP (15)

Equations 14 and 15 are the inbomogeneous, vector, wave equations for

the electric and magnetic field intensities, and they are valid at all

points where P and C are constant, i.e., homogeneous and isotropic

regions.

-8-
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All that remains to show now Is how the result for a scalar wave

function, Eq. 9, can be applied to the vector wave Eqs. 14 and 15. To

do so depends only on the fact that in a rectangular coordinate system,

the Laplacian operator may be written

2 - V 2 Hv + v 2 2 H2 + ;3V 2H3

where el, e2, and e3 form a right-handed set of orthogonal unit vectors

in a rectangular system. In component form, we may then write Eq. 14 as

V2H i + k2 HI -V x 311

where i - 1, 2, and 3. This is a scalar wave equation to which we can

Immediately apply Eq. 9 to yield

13H H(x') - I [V x d(x)]i *(x, x') d3x
V

+ I {x' x') :n Hi(;) - di(x)o (x, x')}dn

Recombining the component parts of this equation, it is not difficult to

show that, in general,

1- - 3
- H(x') f [V x J(x)] (, x') d x

+ ; j*(x, x')[n V] H(x) - H(x)[n VO(x, x')jk do (16)
S

-9- %
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Equation 16 is a coordinate free result despite recourse to a rectangu-

lar system for its derivation, it can be applied in any coordinate

system. The parallel result to Eq. 16 for the electric field can be

written down by inspection.

Up until this point, the source terms, J and p, In Maxwell's

equations have been retained throughout. There are two reasons for

this, one is simply that the added generality required very little

additional work and, secondly, because the equations say be useful for

examining cavity or circuit interaction vith an electron beam. With

regard to this second reason, great care mat be exercised in the appli-

cation of an equation such as Eq. 16 because, in high space charge

regions, the effective permittivity say vary with position and direc-

tion; i.e., plasma permittivities ore usually tensor quantities. So,

except in low space charge devices, the equations of this section say

not be applicable. From here on, it will be assumed that there are no

source trum in V.

The only thing remaining to this section is to show how the inte-

grand of Eq. 16 simplifies when all or part of the bounding surface, S,

is perfectly conducting. At the surface of a perfect conductor, we know

that the tangential components of the electric field and the normal &_

component of the magnetic field are zero; Et 0 0, H - 0. So, using Eq.

11 with - 0,

V x H = jwCE nn

-10-
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From this, It follows that the normal derivative of the tangential

omoeto of a are 0; TU at 0. Let that part of the surface that Is

perfectly conducting be represented by SIC and represent the remaining

part of the enclosing surface by Sf, so that symbolically S - Sc + f

With this understanding, Eq. 16 my be written as

I .f .0 itm de+ i. *(. ri i( *) da (17)

where now the volumes Integration has been dropped and the explicit

evaluation points are Implied by reference back to Eq. 16. Note that

the Integral over SC contains only three unknown functions, the two

transverse components of H and the normal derivative of the normal

component of 8, as opposed to what appears to be six unknown functions

on the general boundary Sf.

In the next section, some approximations will be made regarding

the nature of the unknown functions on both boundary types, and the

number of algebraic equations required to find these functions will be

made clear.

Ilk,



II. APPLICATION OF THE METHOD OF MOMEMTS

The intent of this section is to demonstrate a method for extract-

Ing useful information from the vector surface integral equation of

Section I, Eq. 17. The approach outlined here is just one very simple

application of the general technique called the method of moments, or

'oM. 9

First, the field boundaries are considered to be cross sections of

regular uniform vaveguides for vhich the normal mode functions are

known, and the surface connecting the uniform vaveguides, the junction

surface, Is assumed perfectly conducting in keeping with Section II.

Pulse basis sets are used to expand the unknown H field on the conduct-

ing boundaries, and normal mode expansions are used on the field bound-

aries in the regular vaveguides. The system is excited, or driven, by a

pure mode Incident on the junction from any one of the ports. An over-

determined linear system of equations is obtained by delta testing,

point matching, on both the conducting and field boundaries. The

unknown set contains the scattered mode amplitudes at all the ports

along with the field amplitudes for the pulse basis expansions on the

conducting boundaries.

Figure 2 illustrates a general N port junction and indicates how

the discontinuity volume is defined by placement of planar field bound- A.

aries perpendicular to the axis of each regular vaveguide entering the

junction. These field boundaries can be moved tar enough away from the

junction and into the waveguide so that only propagating modes need to

be considered. Alternatively, they can be moved as close to the

beg

-12-
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fig. 2. Schemstic diagram of sin K port junction indicating placement
of field boundaries defining the discontinuity volume V.

junction as possible, while still remaining Inside the waveguide, by

Including an appropriately large set of evanescent modes along with the

propagating modes on the field plane. This minimizes the discontinuity

volume.

Explicitly, formal mode expansions can be used to express the

field at boundary J,

i - 6 ijh (Al+ £a(j.Jh (18)

where 6 is t the Kronecker delta function and Is used to Indicate that ~

the Incident mode Is In the ith vaveguide. Other definitions are:

Ii Indices over field boundaries.

"'C Integer Indices used for ordering and counting modes.

Each Index corresponds to a unique mode at each f ield

boundary. Mode C at field plane I Is the Incident or

driving mode.

- 13 -
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h[1 ,,1  Normalized mode function at field boundary I and for

mode nI. The back arrow is used to indicate that this

mode is propagating in the - n direction. This func-

tion has the units of magnetic field intensity.

h, Sams as above, except the forvard arrow indicates

propagation in the + n direction. This function is

used for all reflected and transmitted modes.

a Amplitude of mode R at field plane i. Carries no

units, but the power carried by the associated mode isCl
proportional to as

The distinction between mode functions propagating along + or - n direc-

tions in the regular vaveguides is necessary due to a subtle difference

between them as a result of assumed propagation direction. This dis-

tinction is important; it means the difference between success and

failure. Appendix A clarifies this distinction and also gives details

on the normalization of the mode functions both above and below cutoff.

Equation 17 also requires the normal derivative of h on the field

boundaries. To this end,

In i=J 6 i LJ5  I] h[J [ - j 1j I , a jjB 0l[jJ h j,n) (19)

where I is the propagation constant for mode q at field plane j and

will be purely imaginary below cutoff. The formula for computing the

$'I are given in Appendix A. -

-14-

I II

% % %'

... - -= . #-'P- fi P.+'CP-eS 'Z,#'#'Z.,: - .. %', . '.. +'+'+'-..-.'--... ,.%._..''e.....-Pe e. ,j_
19 "1.. % '+ r 4 , " " " " , " + " - - " " .



Now suppose that the conducting surface can be broken down into a

set of simple geometric regions. That is, subdivide the conducting

surface into rectangles, triangles, sections of cylinders, etc., such

that all of the regions combined describe or approximate the conducting

surface of interest. The point of this is to use shapes that can be

defined on a computer with a minimum of effort. On each region, define %

a local set of orthogonal curvilinear surface coordinates (p,s). The

local coordinates correspond uniquely to a point in the absolute coordi-

nate system (x,y,z) by the surface mapping M, which depends on the

surface shape, orientation, and location. Symbolically, M(p,s) *

(x,y,z) for all p,s on the defined region; i.e., M takes the surface

coordinates (p,s) into the absolute system (x,y,z). The surface tangent

unit vectors should be such that p x s - n, where n is the outward unit

normal to the enclosed volume V. The unit vectors p and s are later

referred to as the unit primary and unit secondary directions.

The transverse components of R on the conducting surface can now

be expanded, approximated, by a pulse basis expansion on each region.

H"(a;p.s) " H 8) (20)t [8 kl] t[a,kl] [a,kl)

where the following definitions are used:

a Integer index used for ordering and counting the

simple geometric regions used to build the conducting

surface. %

--15
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k,1 Patch position indices used for ordering and counting

the patch positions on region a.

p's Local coordinates on region a.

I Sum over patch positions k,1 on region a.
[a,kil

Ht fakJ Constant, transverse magnetic field amplitude at

position k,l on region a. Carries units of magnetic

field intensity.

Ht(a;ps) Approximation to transverse H field at local coordi-

nate positions p,s on region a.

P (ps) 1 if p,s is on patch k,l in region a. 0 otherwise.

[a,klJ

This last equation defines the pulse function. Note that nothing here

requires the patch shape to be rectangular or flat; indeed, the sub-

domain patches ordered by indices k,l on region a need not be flat or

rectangular. The pulse function is simply a function having value I

when the local coordinates ps are inside patch k,l, and 0 otherwise.

The normal derivative of the normal component of H can also be expanded

on a pulse basis. Let Hn - L H n

n n n~

H;(a;p,s) H ' P (ps) (21)
[akl] n [a,kl] [a,kl]

where all the same notation applies.

While the pulse basis set may be the most flexible and convenient,

it is certainly not the most accurate basis expansion available. The

-16-
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pulse expansions in Eqs. 20 and 21 approximate smooth functions by

functions with abrupt jumps at patch boundaries. Clearly, some physics

has been lost by this approximation. Reasonably simple subdomain basis

sets that are capable of C' approximations,1 0 smooth approximations, are

linear interpolation on a triangular net and bilinear interpolation on a

rectangular net. On a triangular patch, the linear interpolating poly- '

nomial g has the general form, g - a + bp + cs, where p and s are the

surface primary and secondary coodinates as before. The three coeffici-

ents, a, b, and c, are uniquely related to the values of g at the three

vertices of the triangle by the index equation gi - a + bpi + csi; i -

1, 2, 3. This is trivial to invert for the polynomial coefficients in

terms of the vertex values gi. The underlying basis function for this

Interpolant is sometimes called the rooftop function and can be found by

setting two of the three values for gi to 0 and the third value to 1,

then solving for a, b, and c. For rectangular patches, a bilinear

interpolating polynomial, g - a + bp + cs + dps, is used and again the

four coefficients are uniquely determined by the four vertex values.

The underlying basis for this interpolant is called the pagoda function

and can be found as before by setting three of the four vertex values to

0, while setting the fourth equal to 1. These basis functions are

almost as flexible as pulse functions. The additional organizational

complexity required to implement a scheme using more appropriate basis

sets may prove worthwhile by producing more accurate solutions.

At this point, we have approximated all the surface fields using

expansion functions. This limits the domain of the function space. Now

we have only a finite set of unknown coefficients to look for, not

-17-
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entire functions. On the field boundaries, the unknowns are the mode

amplitudes, and on the conducting boundaries, the unknowns are the pulse

function amplitudes. The next job is to relate these unknowns through

the physics of the situation.

Clearly, the surface integral equation from Section II, Eq. 17,

provides the relationship we need between the surface fields. Using the

field expansions, Eqs. 18-19 and 20-21, in the right-hand side of Eq. 17

yields a formidable looking result

a [akll [a,kl] [a,kl]

-H p(V•n) do
P[a,kl] [a,kl}

+- V*n h, do

II-~ }. a~jn Bj] + V* * h~jn do (22)

J [J,ii] Sirj

Where the transverse H field has been decomposed into its primary and

secondary surface components,

It mpHp -s
t[,kl] p[akl] [a,kl] -

Note that the integrands contain only explicitly known functions; the

free space Green's function is given by Eq. 6 and its gradient by Eq. 7.

- 18-
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We can now generate a systems of linear equations by systemati-

cally enforcing Eq. 22 for a discrete number of points in the range

of x'on S. This is called delta testing or point matching. So, test

Eq. 22 at the center of every patch on each region, points [c,mn], and

use expansion Eq. 20 on the left-hand side to obtain three scalar equa-

tions, one for each of the three vector components. They are:

The primary equation,

~[~m i [ c~mn] - a[c,mn]

+ In H' 1  -~c ,mn]
a [aklJ nla,klcm Gal

4- H . [c~rnnl f-~ c~mnj
Pa,klIrp [c~mn] 9 P[8~kl] 2 [z k1l

a -[c,mn]
+ H [cn].g(23) '.

Secondary equation,

a [cm -B[c~m] [ nas[c,m-IF c,min]

[c~~mnn [ic~mn f [i, 5  ckn]*

a [a,klJ akl

8 -Ic~mn]

+ H Fa -[c~mnj ]cn

[akl 51 ml Sak]+1 [cam,kj (24) *

-19-

-P NP 1 .1 Z'-Z1*

b % % .k.



Normal equation,

n * B-" 8 .11]( mn]a• [c,mn jn [c, m ] l[i lt] J J a][j 'n~n [c 'm n ]  F[J on]

+ H - n [c ,n ] *• c , k ]
a [ n [a,kl] [akl]

+li -[c,mn]+ HP[a,kl]Jn(cmn] a gP[a,kl]

1 *• -[c,mn] (25.)
S[a,klj( c ,m n ] gs[akl]

In Eqs. 23, 24, and 25, the following definitions have been used:

[c,mn] Used to indicate that the test point is at the center of

patch mn on region c.

[a,klJ Evaluation region, indicates that the integration vari-

able x runs over patch kl on region a.

6[amn] Kronecker delta, has value 1 when a - c and m - k, n -
[ a kl

1; 0 otherwise.

S Indicates that the surface integration runs over field

boundary J.

-20-
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iC cn S I) V -nhR4 dci

zFc,mnj

(a,kll la,kl]#nd

9 c,klj - al p(V* * n) dci

-!c,mnl (# n doi
9 a. kl [k

We now have as many equations as there are surface patch unknowns, and

require at least as many more equations as there are modes on each

port. Again, this can be done using point matching; only this time, the

matching is done on the field boundaries. Use Eq. 18 on the left-hand

side of Eq. 22 and test at point mn on the surface of field boundary c,
A.I

point [cmi, where c is used here as an index over ports.

i[i, 2n +c[C,~ -(,mnJ

I:~n 1~ cmnJ a (a,klJt n~ (kll laki]

+ H - [c,min]

" H -C1c,mnJ

a [a,klJ a kl]

+ I~ JITa fl {[j n) +26cjh[c flm (26)
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The testing points [c,mn] in Eq. 26 should be fairly uniformly distrib-

uted on each field boundary to optimize the condition number of the

resulting system of equations. If you have K modes on each port, the

number of test points L on each port required to determine a solution is

given by L > K/3; L must be an integer. The factor of 3 results from

the fact that Eq. 26 is a vector equation, so three scalar equations are

generated for each test point.

The equations that result from testing on the conducting bound-

aries, Eqs. 23, 24, and 25, and those due to testing on the field bound-

aries, Eq. 26, form an overdetermined linear system of equations and

will later be referred to, respectively, as type A and type B equa-

tions. If no approximations had been made obtaining these equations,

they would be perfectly consistent and a unique solution satisfying all

the equations would be possible. But the pulse basis expansions are not

* smooth and, hence, cannot perfectly mimic the physically exact solu-

tion. As a result, our system of equations is inconsistent. In a

strict mathematical sense, the system of equations developed here has

no solution; that is, there exists no solution vector that can perfectly

satisfy every equation in the system. However, from a practical point

of view, the system has minimum residual error solutions where the

residual error is measured by some suitable vector norm.

Classically, a least-squares residual error solution can be

obtained by premultiplying the overdetermined system, Ax - b, by the

conjugate transpose of A, A+ , and solving the resulting square system of
% fk 1.

equations using a standard method. This results however in squaring the %

condition number of the original system of equations and should be

- 22-
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avoided, since moment-method matrices are notoriously ill-conditioned in

the first place. Methods for finding the pseudo-inverse of A that are

based on finding its singular value decomposition, which is nondependent

on premultiplication by A+ , and are available as library subroutines

which should work. But they run at substantial overhead cost and

require a significant amount of additional storage.

For the results in Section 3, a variant on the iterative algorithm

called ART was employed. The synonym ART stands for "algebraic recon-

struction technique" and was first used extensively on early X-ray CT

scanners; it was the algebraic tool used to reconstruct cross-section

profiles from X-ray attenuation data, and hence its name. This algo-

rithm and some variants thereon are explained in detail in Appendix B.

Briefly, it is a row by row steepest descent algorithm that can be

relaxed to give minimum norm error solutions. Being a "row action"

method, ART can be implemented with just one row of matrix elements inN

the computer core at a time, keeping all other rows on disc space. %

Because disc access time is slow, it is best to read in as many coeffi-

cient rows as possible, so that the number of disc access requests is

minimized. Although ART exhibits only a linear rate of convergence, L

guarantee of convergence does not depend on degree of diagonal dominance

as with, for example, the SOR algorithm; 1 1 indeed, ART converges almost .d.,I

unconditionally. e

If the system of equations developed in this section were per-

fectly consistent and very well conditioned, there would be no need to

look for any more help in finding the solution because all the physics

would be represented and mimicked by the equation system. But, as was

- 23-
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noted earlier, some physics has been lost. To some extent, we can

reintroduce the physics by making our approximate solution have at least

some property in common with the exact physical solution. This takes

the form of enforcing a conservation of power constraint on the solu-

tion. Mathematically we require that all the propagating power, real

power flow, in the reflected and transmitted modes must be the same as

the power carried by the incident mode. Since the normal mode functions

in Eq. 18 have all been normalized to carry the same amount of power, we

can write,

1 a £ [ 1j, B] (27)

j (j, .6180,i

where 0 is the summing index over only the propagating modes on port

J. This constraint was enforced at the end of each ART update of the

entire systsem by a constant phase adjustment. The update takes the

(k)
following form: Let a , be the predicted mode amplitudes at the end

(k )
of the kth ART pass, then adjust the mode amplitudes to a i,n] before

starting the next ART pass by using

(k)
(k+) a1 1 n) (28)

[ (k) (k)* 1/2

[ S a [JI6 a B] .'- •

s* * *.u

(k+)
Doing this, the values of au 1 1nJ always satisfy Eq. 27 without altering

the phase of the initial values. Enforcing this constraint also tends

to accelerate the overall convergence rate for the algorithm by reducing

the solution space to only that class of coefficients that satisfy Eq.

-24-
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27. Other constraints 12 may also be used; if, for example, you have

symtric ports, then constraints on the solution based on that symmetry

should be used.

As an aside, Spielman 13 used a formulation similar to the one

described here (but in two dimensions) to find the cutoff resonances of

arbitarary cross-section vaveguides. When there are no ports, Eqs. 23,

24, and 25 reduce to a square matrix system of the form Ax - 0; this is

an sigenvalue problem for resonances in a three-dimensional cavity.

Spielman found the eigen or resonance values by searching for frequen-

cies whore the magnitude of the determinent of A has minimums. Comput-

ing a matrix determinant is an N cubed operation, where N is the edge

dimension of the matrix. Embedding an N cubed operation into a search

algorithm means slow business. This is also a nonlinear eigenvalue

problem. Since all the matrix elements vary in a complex way with

frequency, it cost N squared numerical integrations over surface patches

to update A to a new frequency. Spielman gets away with all this

because his matrix size is small, only 21 by 21 elements. It seems

unlikely that a practical algorithm for finding eigen frequencies in

three-dimensional cavities, based on this approach, would be possible.

4

.0%~
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IV. RESULTS

This section gives numerical results for a few simple test cases

based on Eqs. 23, 24, 25, and 26 in Section III. The job was broken

down into three sections. A Fortran code was written to implement

each. The first code allows one to build a data file specifying arbi-

trary rectangles in three dimensions. Discontinuities that could be '".

built using rectangles were the only type considered. Then, for each

wavelength, a second code computed on the order of N squared coupling

coefficients, where N is the total number of unknowns. The last code

"solved" the overdetermined system of equations using a variant on the

ART algorithm. These Fortran programs are documented in Appendix C.

They were all developed on the Gould 9080 computer system at the Univer-

sity of Utah College of Engineering. . ,

Writing a code capable of specifying more arbitrary shapes is

certainly possible but, from an implementation point of view, this job

of specifying and organizing the surface geometry is the most diffi-

cult. Once the surface shapes are specified and ordered by some ,.

accounting system, the calculus follows mechanically from the equations

of Section III. The purpose here was only to find out if, and then how P'

well, a formulation of this type could be expected to work. So while a

code limited to only discontinuities that could be built from rectangles

is of no practical value, it was entirely adequate for answering many

basic questions concerning the performance of the algorithm.

Data are presented for three test cases. The first two are very

simple, a straight section of uniform waveguide as a two-port junction
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and a straight section of uniform waveguide with a perfect short on one

side. These test cases, although trivial, are important because exact

analytic results are available for comparison. They were used initially

to debug the Fortran codes, and later to help answer such questions as

how many surface patches are needed along the length and across the

width of the waveguide at a given operating wavelength in order to

retain an accurate solution without using an excessive number of

patches. For the straight section of uniform vaveguide, results are

given with and without the conservation of power constraint enforced.

An asymmetric iris in a straight section of uniform waveguide was

considered as the third test case. These results were compared with

analytic results found using approximate susceptance data available in

the Microwave Engineers' Handbook, 14 Vol. 1, p. 81. For the reflected

phase and amplitude, measured data were also obtained using a slotted

line for further comparison. Data are also given in this case showing

the equation consistency (average residual error per equation) as a

function of wavelength for the solutions presented.

Case 1. Straight Shot Data

In this case, the TE10 mode in a rectangular waveguide is numeri-

cally "propagated" for a distance of one tenth of the free space cutoff

wavelength, Ac, along the guide axis. In Fig. 3, the cross-section

dimensions were a - 0.5 A and b - 0.2 Ac t or equivalently by 0.5 by 0.2c c t

cutoff units.
J. .0

4d
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t
bI

Fig. 3. Waveguide cross section for straight shot data.

The surface patches were such that we had 12 subdivisions along a,

2 along b, and 2 more along the axis. Each field boundary was tested at

24 uniformly distributed points. This resulted in 168 surface patch

unknowns and 2 field boundary unknowns. Since the field boundaries were

tested so many times, we had 312 complex equations.

Two sets of results are given, Figs. 4 and 5 represent the solu-

tion obtained without using the conservation of power constraint, and

Figs. 6 and 7 show the solution with the constraint enforced, as out-

lined in Soctlon XII. On all the plots, the abscissa gives the operat-

ing wavelength in cutoff wavelength units. The upper curve in Figs. 4 S

and 6 represents the computed transmission amplitudes, while the lower

curves on these plots are the computed reflection amplitudes. Clearly,

the exact results should be unity transmission and zero reflection

amplitudes. Figures 5 and 7 are the transmission phase with respect to

the input plane for the unconstrained and constrained cases, respect-

Ively. On these plots, the marked curves are from the computed data,

while the solid unmarked curves represent the exact phase given by

36* _R 
e.

R%

where the operating wavelength is givet. by A - R A
c
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3. L~~- Reflectsion

0 .0
.1 uW .0 .0 .0 .0 10

80
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-16. .10..06006 10

-240.00

-680.00

-100. .

10 .20 .1 40 .50 .60 .70 .60 .90 1.00

wave length

Fig. 5. Computed versus theoretically exact phase
for the transmission data in Fig. 4.

-29-

~ b~ t ~%



Ia I

UJ

w ImIng~

Fi.6. '-tdTrnsrsin ansmielecion apiue

a.

E

0 o.

1.00

0.0

Wave length

Fig. 6. Computed transmission and reflection amplitudes
for the straight shot case with the conservation
of power constraint enforced.
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Fig. 7. Computed versus theoretically exact phase
for the transmission data in Fig. 6.
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From these data, it can be seen that the conservation constraint

made very little difference in the solution. The transmission phase and

amplitude are slightly more accurate with the constraint enforced, but

the reflection amplitude was a bit more accurate without the con-

straint. Note, the overall accuracy in the unconstrained solution

indicates that the 3ystem of equations used has retained most of the ,.

physics despite the expansion function approximations. One of the most

remarkable aspects of this solution was the ability of the numerical

algorithm to accurately track the phase all the way from the low fre-

quency end, where the guide wavelength is much longer than the free

space wavelength, up to the high frequency end, where the guide wave-

length and the free space wavelength are not much different. -r

AAl

Case 2. Straight Shot with Perfect Short

For this case, the TE10 mode in a rectangular waveguide is numeri- -

cally reflected off a perfect shoring plane 0.1 X away from the refer-
c

ence field plane. The guide cross section was the same as for Case 1.

Again, 12 subdivisions were used along a, 2 along b, and 2 along the

axis. The shorting rectangle was subdivided into 3 by 12 patches along

its short and long axes, respectively. The field boundary was tested at

36 uniformly distributed points. This results in 276 surface patch

unknowns and 1 field boundary unknown, for a total of 277 complex

unknowns. The number of complex equations as a result of testing is

384.

A
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Again, two sets of results are given. Figures 8 and 9 give the

amplitude and phase for the unconstrained solution, and Fig. 10 gives

the phase for the constrained solution. In the case of the constrained

solution, the amplitude, as a result of the constraint, is exactly

unity, and so was not plotted. Both phase plots indicate the numeri-

cally predicted solutions with marks; the unmarked curves are the exact

phase results which are given by

*m-1800 - 720 l-R

where, as before, R is the abscissa value on these plots. The abscissa

value is related to the physical wavelength by X - R X .c

While the phase tracking is not bad for the unconstrained solu-

tion, the reflection amplitude (Fig. 8) deviates away from unity by as

much as 10 percent at the short wavelength end, R - 0.4. In the region

where the data overlap the phase accuracy of the constrained solution is

a bit better than for the unconstrained solution, and is not bad all the

way down to R - 0.2. Of course, as was previously mentioned, the

reflected amplitude is perfectly unity for the constrained solution.

Although the unconstrained solution mimics the exact solution rather

well, the value of the constraint condition as a means of improving the

solution is much clearer here than in Case 1.
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4I

-0001 2 3 4 5 6 7 8 .90 .04
Wave length,

Fig. 8. Reflection amplitude for the straight shot case with

a perfect shorting plane on one side and also without

enforcing the conservation of power constraint.
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Fig. 9. Computed versus theoretically exact phase
for the reflection data in Fig. 8.
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Fig. 10. Computed versus theoretically exact phase for
the straight shot with shorting plane case with
the conservation of power constraint enforced.

.. -

Case 3. Straight Shot with Asymmetric Iris

In this case, an asymmetric iris is placed 0.1 A away from the P.9,,
c

input port, and the output port is 0.1 A on the other side of thec

iris. The iris is assumed to be perfectly conducting and to have zero

thickness (see Fig. 11). The waveguide cross section is the same as for

Case 1. This geometry was subdivided using 16 divisions along a, 2

along b, and 4 along the axis from port to port. The iris was subdi-

vided using 3 by 4 patches for 6/a - 0.75, and 3 by 6 patches for 6/a-

0.625. Note that there are two iris rectangles, one for each side.
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Perfectlya
conducting ii

Fig. 11. Geometry for asymmetric iris.

The dominant TE10 mode was used to drive the system, while the

first 8 TEM modes were considered in the field expansions at each field

plane or port. Each field boundary was tested at 32 uniformly distrib-

uted points. Taken all together, this resulted in 504 surface patch

unknowns and 16 field boundary unknowns, for a total of 520 complex

unknowns. The number of complex equations generated by testing was

696. This is for the case 6/a - 0.75. In the case 6/a - 0.625, we had

556 complex unknowns and 732 complex equations. Computation times were

on the order of 25 minutes per wavelength to generate the coupling

coefficients, and 10 minutes per wavelength to solve the resulting

system of equations. These times are for the Gould 9080 computer

system when there are no other users on board.

The conservation of power constraint was enforced for all of the

computed curves for Case 3. The numerically computed solutions are

makdby "o" for TE0results, and by "*" for TE 20 reuts eleto

phase measurements were made using a slotted line, and these results are ,b.

denoted using an "I" symbol on the reflection plots. The solid unmarked

curves are results predicted using published susceptance data, they are

for TE10 comparison.
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Maracuvitz15 indicates that susceptance data of the type used

here have been derived by the "equivalent static method," which uses the

static aperture field for the two lowest modes. In terms of these data,

the complex reflection amplitude is given by

a-(o) - _ j

and the complex transmission amplitude by

2(Yo/B) e- 2j BL
a +(2L) 0

(L 2(Y /B) - j

where the ratio Yo/B is found on page 81 of the Microwave Engineers'

Handbook,14 and B - 2w/A . For all the data in this section, L -g

0.1 X .In the limiting case of a perfect short, Yo /B goes to 0, and the
C - -2JBL

equation for the reflection amplitude gives a (o) - e ,which is the %

correct amplitude, but the phase is wrong by 180. One can simply

multiply the equation by -1 to correct the deficiency, but rechecking

the derivation did not warrant this. The reflection phase curves were

all plotted with this 1800 discrepancy removed. Shifting these curves I:?

180* brings them into closer agreement with both the measured and numer-

ically predicted phase curves.

Figures 12-15 are the computed solutions for 6/a - 0.75. In this

case, agreement between the numerical solution and the solution found

using susceptance data is really quite good, especially for the trans-

mission data. Figures 16-19 give solutions for 6/a - 0.625. Here the %

agreement is less striking. Keep in mind that the susceptance data are
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Fig. 13. Reflection phase, case 6/a -0.75.
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not exact. Compare the reflection amplitude curves in Figs. 12 and

16. Note that the susceptance data solutions have changed quite

markedly, while the numerically predicted solutions differ more

modestly. The numerically predicted solutions also appear to vary in a

more realistic way near the transition region, where R - 1/2. Although

not conclusive, the measured reflection phase angle is closer to the

numerically predicted curves than to the susceptance data curves, even

when these curves are corrected by 180% as previously mentioned.

Figures 20 and 21 give a measure of the consistency in the equa-

tion set at that point in the iterative process where the solution was

taken. The ordinate on these graphs gives the average error per equa-

tion. The reason for this inconsistency was detailed in Section III; it

is primarily due to the pulse basis approximation. These graphs show

that the equation sets are more consistent at the high frequency end

than at the low frequency end. Although this was not expected a priori,

one postulation is that at the low frequency end, the guide wavelength

is much different from the free space wavelength, and the effect of the

waveguide walls is much stronger making the surface patch approximation *~

more important. On the other hand, at the high frequency end, the guide :
wavelength and the f ree space wavelength are nearly the same, so the

effect of the guiding walls is less critical.

le
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V. CONCLUSIONS AND RECOMMENDATIONS

This paper has presented a three-dimensional multiport formulation

for waveguide scattering. Simple test computations were made to verify

the validity of the formulation. Test data were found to be in good

agreement with results obtained using other methods for TEIo compari-

son. In the case of the asymmetric iris, results were obtained for

higher order TE modes as well; these results are of dubious accuracy, as

no other data were available for comparison. It is suspected that the

higher mode accuracy will diminish rapidly because the patch size

becomes comparable to the rate of variation in these modes.

Although the formulation presented here is quite generally valid,

it may be more expensive, both in terms of storage cost and in terms of

computational intensity, than a corresponding three-dimensional finite

element approach. Computationally, one must compute on the order of N

squared numerical integrations at each new wavelength. Because the

solution algorithm is iterative, the same coefficients are needed

several times, and hence all N squared complex numbers must be saved.

The recomputation cost is simply too high to do otherwise. This repre-

sents a storage cost proportional to the surface area of the enclosed

volume squared, or equivalently proportional to the volume to the four-

q thirds power. Finite element methods would require storage proportional

to the volume. So a formulation of this type may not be competitive

with the finite element method for internal scattering problems. The

formulation of this paper may, however, be valuable for determining the

scattering characteristics of slots in waveguides; that is, junctions %

'P 

- 43 -

MPU of .0 %~/ % % % % .'~ '

%.-. 0*. 4* 00~J*~U

0 % %



Von14L lp, v% Ni PI W~tVVR1W

that involve radiation into free space. Here, boundary conditions

external to the waveguide must also be taken into account. Unbounded

problems pose more difficulties for finite element formulations than for

surface Integral equation approaches.

The formulation in this paper could be pushed into a category of

useful mathematical software if some of the following problems could be

solved:

1. A generalized surface generation routine could be developed

that would allow the engineer to rapidly define new surface

geometries. This might be done using a triangular net bound-

ary. Each net point could then be moved about in three dimen-

sions to form a wide variety of surface shapes.

2. Because the integral operator is a "smoothing" operator, we

got away with using a pulse basis expansion on the conducting

boundaries for the simple test cases of this paper. However,

it is suggested for more complex geometries and increased
-er.

solution accuracy that a smooth C* basis set be used. For the

triangular net above, the rooftop functions described in

Section III would form an appropriate basis set.d%

3. For the asymmetric iris data, the bulk of the computation time

was tied up in computing the coupling coefficients and not in

solving the resulting system of equations. Algorithms capable

of rapidly and accurately approximating these coefficients

would be valuable.

4. Many important problems Involve at least one plane of sym-

metry; if this symmetry could be exploited, the number of

-44-
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unknowns would be reduced by one half and the matrix would

have only one quarter as many elements.
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APPENDIX A

NORMALIZED MODE FUNCTIONS AND EXPANSIONS

Part 1

General relations for EM waves on a uniform cylindrical waveguide-

ing system with care taken to preserve sign changes as a result of

assumed propagation direction.

In a uniform waveguiding system, that is, a system having no

physical or material variation along the z axis, it turns out that we -V

have simplified relations for the transverse components of any mode

supported by the structure in terms only of the axial, z directed field Ai

components.

To this end, expand the field vectors and the del operator into
' :,.- ._

their transverse and axial components,

Ai-- t+Az" '

ABAt +Az

V-V +V
t z

With these definitions, note that

VxAV xA +V xA +V x A
t t t z z t % I.

Using this identity in Maxwell's equations, Eqs. 10 and 11, and iden-

tifying component directions, we obtain two relations for the transverse

components of the equations,
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Vt x + V x Et w-jH (A.1)

L

V t = F.Et (A.2)

Since the structure is uniform along z, we can assume that mode m will

propagate with spatial variation that looks like -.

j8z
A(x,yz) A(x,y) e

where the - sign is for propagation in the + z direction and the + sign .,

for propagation along the - z direction. With this understanding, note

that

xA -- .5V-z x A(Z x JB)M"'-x
z mm

t%

Using this result in Eqs. A.1 and A.2,

-Jwill -V x E T.JO z (A.3)-t t m m m.z t

JwcEJ mxH TJ H ) (A.4)
t z t

Substituting Eq. A.4 into Eq. A.3 to eliminate the transverse component

of E and using the identities

,J .5. ,..

.. *.-
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Z X (V t X i) V t Az

t 
t

we obtain

(k - B~H =JWEV XE T is V H (A-5)
mm t t m z m t m

Similarly, we could eliminate the transverse components of H by substi-

tuting Eq. A.3 into Eq. A.4 to obtain

(k2 0 2 )Em iJwPVt xHm TJOVtEm (A.6)
m z

Here, k 2  2 . Equations A.5 and A.6 are standard results except that

the + signs are not often included; usually, just the - sign is used for

propagation in the + z direction. This distinction is important for

mode expansions involving propagation in both directions.

In the case of TE modes, Em = 0 and Eqs. A.5 and A.6 reduce to " -.

z

m H V

Sk2 2 t mm t  m

Em 2 2 tHm-- (A.7)

m k2  m Lz J

For Th modes, H - 0 and Eqs. A.5 and A.6 reduce to
z

S.,
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Ht k2 _2 tEm xz

mt k 2 - B 2  E  
(A.8)

S iB

mt k2 _a2 t m (A8
m

These equations show that the axial field component in a cylindri-

cal waveguide plays a role similar to that of a scalar potential in

general EM field theory. The fields in a cylindrical system are com-

pletely determined once the axial fields are known. %

Since the electric and magnetic fields are solutions to vector

wave equations, Eqs. 14 and 15, the axial fields must be solutions to

H TE

2 + y0(A.9)

2E2 2 TM =[:],, T

where y -k _ Bm' Solutions to Eq. A.9 are subject to the following

boundary conditions:

n •VH -0 for TE
* mz

E -0 for TMm

where n is a unit normal to the conducting surface of the cylindrical

waveguide.
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Part 2

Normalized mode functions. In Part 1, the basic relatio) ships

between field components in a cylindrical system were outlined. The

electric and magnetic mode vectors were denoted by capital letters E and

H, respectively. In this section, a normalization condition is given.

The normalized mode -vectors will be denoted using lower case e and h.

The normalization condition used here is that each mode carry 1 watt

real power above cutoff, and 1 watt reactive (imaginary) power below

cutoff. Explicitly, integrate the Poynting vector over the guide cross

section S and enforce the following condition:

1 [W] for both TE and TM modes above cutoff

e x ds J [W] for TE modes below cutoff (A.10)M 1S mt mt ' "

-j [WI for TM modes below cutoff

The change of sign on the reactive power below cutoff reflects the fact

that nonpropagating TE modes appear inductive, while nonpropagating TM

modes appear capacitive.

Using the relations from Part 1, the condition indicated by Eq.

A.10 can be enforced in terms of the axial fields only. For TE modes,

use Eqs. A.7 to obtain .,'

k• 1 [W] above cutoff %

2 f h h ds - (A.11)
SS z z i[W] below cutoff _%

For TM modes, use Eqs. A.8 yielding e.,. /
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ds [W] above cutoff

2 2 f e m em  ds- (A.12)F S z Z -j [W] below cutoff

Once the axial modes have been normalized, the corresponding transverse

field components may be found using Eqs. A.7 and A.8.

Arbitrary fields in a cylindrical waveguide can now be written in

terms of the normalized mode functions,

+
m m m mm

where m ranges over all modes, both TE and TM, above and below cutoff.

The forward-backward arrows indicate propagation in the + z and - z

directions, respectively.

Part 3 %

Explicit mode functions for rectangular waveguides. In a rectan- P

gular waveguide with cross-section dimensions a and b, the mode func-

tions that satisfy Eq. A.9 with the appropriate boundary condition for

TE modes is

'.€.

frx co , -.
h -A cos COS
zmn mn a b

with

( 2 2

"mn (b

m,n 0 0, 1, 2, .... ; but not both zero

-51 -
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Using Eq. A.12 for normalization,

21 1/2

A 2vyr mn m
k$ a *b 17pL mn

where

: [W] above cutoff

[W] below cutoff

2 if m or n is 0

I4 otherwise

For TM modes, the mode function that satisfies Eq. A.9 with ez - 0 on

the boundary is

e A sin Wmx sin Irny
z in a bmn

with

2 )2 +(.!)

m,n - 1, 2, ....

Using Eq. A.13 for normalization,

mn~~[;Y~ab 1/2

An mn alu]
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where

1[W] above cutoff

[-j W below cutoff
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APPENDIX B

COMPLEX ART

Consider a linear system of equations,

Ax - b

Let (k) be the kth approximation to the solution vector x and note that

the error or residual in the ith equation in the system can be written

as

r (k) a (k) - b

where ai is the ith row vector from the matrix A, and bi the ith element

in the column vector b. The gradient of the residual, steepest descent

direction, can be computed with respect to a change in the approximation

vector Z (k)

(k T ,Vrik  ai ..

i i

This says that the gradient of the residual for the ith equation in the

system is the transpose of the ith row vector in the matrix A. Now,

adjust the approximate solution along the steepest descent direction

using the update form

(k+l) -(k) T
Z k-

54
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The scalar 0 k is chosen to make ri zero. This gives the condition

0- -( k - bi

Solving for ak' we have

rik)

"k -ai ai

The basic ART update for real systems of equations is then

(k) T
y(k+l) . y(k) -i (B.1)

Ti T

Note that ART adjusts every element in the solution vector for each

equation. When Eq. B.1 has been enforced for every equation in the

system, a complete update has been accomplished. Usually, several

updates are required, but if the system has a unique solution, then

li ((k) _ ) 0

Any n by m complex system of equations can be written as a 2n by 2m real

system to which Eq. B.1 can be applied directly. Alternatively, update

formulae equivalent to Eq. B.1 can be derived which apply directly to

complex systems. For A x - b a complex system, decompose the complex

residual into its real and imaginary parts,

ri a i + JBi  a,B real valued

-55-
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Then the update that makes ai zero is I 
-

(k) +
I(k+l) . Y(k) i ai (B.2)

The update making B zero is IN
(k) T

(k+l) (k) - a i.y (B.3)
ai

where the following notation applies:

aT : the transpose of a

+a : the conjugate transpose of ai

Equations B.2 and B.3 are applied by computing the real part of the

residual for equation i, ai, then enforcing Eq. B.2. Next compute the

imaginary part of the residual for equation 1, 8,, and enforce Eq. B.3.

A variant on this algorithm that I call new ART or NART applies to

systems where the diagonal element is larger in magnitude than other

elements in the same row. This update changes only the ith component

of Z when applied to the ith equation, rather than all the elements p.

It

in yo The NART update formulas corresponding to Eqs. B.2 and B.3 are S.

%% .
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a(k) a

y(k+l) y(k) i

(k) a.

y(k+l) y(k) - I ii (B.4)
yi +

a1 a

where the elements of A are [alj. Equations B.4 no longer reduce the

ith residual to zero at each update, but in many cases this update

scheme converges in fewer iterations and it costs less per iteration.

NART is the update scheme used by subroutines ARTA and ARTB in this

report.
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APPENDIX C

FORTRAN FOREVER

This appendix gives documentation for the three Fortran codes used

to test the formulation presented in Section III. These codes are of no

immediate value, but they are included here to demonstrate work success-

fully completed and also because they may be useful for showing how such

computations may be organized. -

Program rspec.f

This program allows for the specification of arbitarary rectangles

in three dimensions. First, the plane of the rectangle is specified by

a point in the plane, x], and by the direction of the "outward" normal

to the plane, n. Here, the term outward means outward with respect to

the volume that is enclosed by the rectangles. The equation of the

plane is given by all points x such that x • n = x, * n, or more explic- .

itly by

nix + n2y + n3z = n *x 1  (C.l)

where n = n x + n2y + n3z• The second vertex of the rectangle x2 can

now be specified using only two of its three components. Since specify-

ing two of the three variables in Eq. C.1 completely determines the

third variable, we can write the triplet of points as:

...-,
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[(n ,X I -n 2Y2 - n3 z2 )/nn, Y2' z2 J for n > n2, n3

x2n 1 1 Ix2 -n3z2 n2z2 for n 2 > n1 , n 3

1x2, Y2 . (n x -n 1x 2 - n2 Y2 ) In3] for n3 > n1, n2  (C.2)

The three forms above are entirely equivalent except when n1 , n2, or n3

are zero. To avoid division by zero, use the appropriate version of Eq.

C.2; note that at least one component of n is not 0, since Inj I. The

surface primary direction can now be defined using

p(x1 - x1 )x + (Y2 - y1)y + (z2 - zj)z (C.3)S...

The third vertex 13 can now be specified by entering just one of its

three components, since it must lie in the plane and on a line perpen-

dicular to p, i.e., s • p 0, where s is the secondary direction given

by

s-(x 3 - xdx + (y 3 - y)y + (z 3 - zdz (C.4)

Enforcing this condition, we have for each of the three cases in Eq.

C.2:

1%%

P'a.
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Case 1, n, > n2, n3

ay 3 + bz -c
3 3

where

a = y2 - Y1 - n2 (x2 - X1 )/n"

b=z 2 -z 1 - n3(x2 - XX)n1  '

c [x1  n I /nn1](x 2 - x1) +yI(y 2 -yI) + z -(z z1)

If lal > fb(, use Y3 - (c/a) - (b/a)z3, enter z3 , evaluate Y3 , then use

Eq. C.1 to find x3, otherwise use z3 - (c/b) - (a/b)Y 3, enter Y3 , evalu-

ate z3, then use Eq. C.1 to find x3.

Case 2, n2 > n1 , n3

ax 3 + bz 3 -c

where "e%

a x 2 -x 1 - nl(Y2 - yl)/n 2

b -z z - n(y - Y)/n
2 1 3 2 1i2

c = (x 2  - Xld + [Yl n x I / 2](y 2  - y) + Zl(z 2  zl)-.:...

.%

-60- . l'

* - 1l bh#-, V . *%*,,'.... ... V ,. . • • '"",""-, . ."' " -", *- *' . . -. *•' "'''. . . . . . .. .".' • ". '. .'"*k .. ... " '.'"e"," -' _ .JQ .4 -.' --d
%.. 4 %-_



If jal > Ib, use x3 - (c/a) - Cb/a) 3 , enter z3, evaluate x3 , then use

Eq. C.1 to find y3. otherwise use z3  (c/b) - (a/b)x3, enter x3 , evalu-

ate z3, then use Eq. C.1 to find Y3.

Case 3, n3 > nl, n2

ax3 + by3  c

where

a = x2 - x 1 - nl(z 2 - zl)/n 3

b y2 - yI - n2 (z2 - Z1 )/n3

c W X1 (x 2 - XI) + y1(y2 - y) + [z, - n * x1 /n31(z2 - z).

If lal > Ibl, use x3 - (c/a) - (b/a)Y3 , enter y3, evaluate x3, then use

Eq. C.1 to find z3, otherwise use Y3 - (c/b) - (a/b)x 3, enter x3, evalu- .

ate Y3, then use Eq. C.1 to find z3.

This method of rectangle specification requires a minimum amount

of input from the user, thereby avoiding specification errors.

Note that the rectangle vertex information should be ordered so

that p x s - n , where p and s are unit vectors in the directions p and

s from Eqs. C.3 and C.4. Any point on the rectangular surface can now

be described by the local coordinates (p,s). The transformation from

the local system to the absolute point x is accomplished by %
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x = x1 + pp + ss for pE[O, D j (C.5)

p

sE[O, D]

where

Dp 1;2 - ;i, D 6i 1 3 -xj(C.6)

For the final output record rspec.f stores the following informa-

tion about each rectangle:

x n, p, s, Dp, Np, N S

where D and D are the primary and secondary edge lengths from Eqs. -
p s

C.6, and Np and N are the number of primary and secondary subdivisions

along each edge.

% % .
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PROGRAM RSPEC

C This program allows you to specify arbitrary rectangles in three
C dimensions. First the plane of the rectangle is defined by the
C "outward" normal direction and the coordinates of the first vertex,
C Vi. Next the program will ask you to give the two coordinates need-
C ed to specify the second vertex, V2, on the defined plane. Finally
C you will be ask to enter the single remaning coordinate required
C to specify the third vertex, V3, along the normal to VI-V2, through
C Vi, and on the defined plane. From this data the primary and second-
C ary unit directions are computed for later use by surface integra-
C tion routines.

REAL VI(10,3),UN(10,3),UP(10,3),US(10,3),DP(10),DS(I0)
INTEGER NP(10),NS(10)

WRITE(6,*) 'Enter the number of rectangles to be specified.'
READ(5,*) NR
WRITE(6,*) 'Enter the number of conducting rectangles out of total.'
READ(S,*) NRC

WRITE(6,*) 'Specify the conducting rectangles first.'
DO 100 I-1,NR

5 WRITE(6,*)
WRITE(6,*) 'Data entery for rectangle number ',I,'.'
WRITE(6,*) 'Enter normal direction, Nx,Ny,Nz.'
READ(5,*) X,Y,Z '.

D-SQRT(X**2+Y**2+Z**2)
UN(I,1)=X/D ..
UN(I,2)-Y/D
UN(I,3)-Z/D
WRITE(6,*) 'Enter first vertex, X1,YIZ1.'
READ(5,*) X1,YI,Zl
D-XI*UN(I,1)+YI*UN(I,2]+Zl*UN(I1,3)

C Test for free variables.
XN=ABS(UNI,1)) ,'

YN-ABS(UN(I,2))
ZN=ABS(UN(I,3))
IF((XN.GE.YN).AND.(XN.GE.ZN)) GOTO 60
IF((YN.GE.XN).AND.(YN.GE.ZN)) GOTO 30

C Case 1. N3 > NI and N2 %
WRITE(6,*) 'Enter X2,Y2.'
READ(5,*) X2,Y2
Z2=(D-UN(I,1)*X2-UN(I,2)*Y2)/UN(I,3)
UP(I,1)-X2-X1
UP(I,2)-Y2-Y1
UP(I,3)=Z2-ZI
A=UP(I,1)-UN(I,I)*UP(1,3)/UN[I,3]
B=UP(I,2)-UN(I,2)*UP[1,3)/UN(1,3)-.

C.XI*UP(1,1)+YI*UP(I,2)+(Z1-D/UN(1,3))*UP(I,3)
IF(ABS(A).GT.ABS(B)) GOTO 10

WRITE(6,*) 'Enter X3.'
READ(5,*) X3
Y3-C/B-(A/B)*X3/
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GOTO 20

10 WRITE(6,*) 'Enter Y3.'
READ(5,*) Y3

20 Z3-(D-UN(I ,1)*X3-UN(I ,2)*Y3)/UN(I,3)
GOTO 90

C Case 2.N2 >NIand N3
30 WRITE(6,*) 'Enter X2,Z2.'

READ(5,*) X2,Z2

UP( 1,1)-X2-XI
UP(I ,2)-Y2-YI
UP(1I,3)-Z2-ZI
A-UP(I,1)-UN(1,1)*UP(I,2)/UN(1,2)

C.X1*UP(1,1)+Z1*UP(I,3)+(Y1-D/UN(I,2) )*UP(I,2)
IF(ABS(A).GT.ABS(B)) GOTO 40

WRITE(6,*) 'Enter X3.'
READ(5,*) X3
Z3-C/B-(A/B ) *X3
GOTO 50

40 WRITE(6,*) 'Enter Z3.'
READ(5,*) Z3 g
X3-C/A-(B/A)*Z3

s0 Y3-(D-UN(I ,1)*X3-UN(I ,3)*Z3)/UN( 1,2)
GOTO 90

C Case 3. NI > N2 and N3
60 WRITE(6,*) 'Enter Y2,Z2.'

READ(5,*) Y2,Z2
X2-(D-UN(I,2)*Y2-UN(1,3)*Z2)/UN(l,l)
UP( 1,1)-X2-XI
UP(I ,2)-Y2-Y.
UP(I ,3)-Z2-ZI

C.Y1*UP(I,2)+Zl*UP(I,3)+(X1-D/UN(I,1) )*UP(I,1)
IF(ABS(A).GT.ABS(B)) GOTO 70

WRITE(6,*) 'Enter Y3.'
READ(5,*) Y3
Z3mC/B- (A/B) *Y3
GOTO 80

70 WRITE(6,*) 'Enter Z3.'
READ(5,*) Z3
Y3=C/A-(B/A)*Z3
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C Compute unit directions and distances.
90 DPC I)-SQRT(UPCI ,1 )**2+UP( 1,2 )**24.UP( 1,3 )*2)

UPC! ,l)-UPCI,1)/DP(I)
UPCI ,2)-UPCI,2)/DPCI) 00.
UPC I,3)-UPC I,3)/DPCI)
USC 1,1)-X3-XX
US(I,2)=Y3-Yl
USC 1,3 )-Z3-ZL
DSCI)-SQRTCUSCI,1)**2+US(I,2)**2+USCI,3)**2)
USCI, )-US(I,1 )/DSC I)
USC 1,2)-USC! ,2)/DS(I)
USC'I,3)-USCI,3)/DSCI)

ViI 1,2)sY1
VI13)-Z1

WRITE(6,*) 'Enter the number of primary subdivisions, NP.'
READCSs*) NPCI)
WRITEC6,*) 'Enter the number of secondary subdivisions, NS.'
READC5,*) NSCI

$C Error alowance, in case of Incorrect data entry.
WRITE(6,*) 'If data entry was Incorrect type 0", otherwise "I".'
READ(5,*) NANS
IF(NANS.EQ.0) GOTO 5

100 CONTINUE

C Store point data.
OPENC1O,FILE-'rec.dat',STATUSu'unknown')
REWIND(C10)
WRITE(1O,') NR,NRC
DO 110 1-1,NR

NWRITEC1O,*) CV1(I,J),J-1,3) I
A%, WRITE(1O,*) CUNCI,J),J-1,3)

WRITE(1O,') (UPCI,J),J-1,3)
WRITE(10,*) CUS(I,3) ,J-1,3)
WRITE(1O,') DPCI) ,DS(I) ,NP(I) ,NS(I)

110 CONTINUE
CLOSEC 10)

C Test, compute vertices from data as a check.
DO 120 1-1,NR
WRITE(6,*) I
WRITE(6,*) (V1CI,J),J-1,3).1

-roeX2-V (II+DP( )*UP la'

Y2-Vl1,2)+DP(I )*UP( 1,2)

WRITE(6,*) X2,Y2,Z2
X3.VI1,1)+DS(I)*USCI,1)
Y3.VI1I,2)+DS(I)*US(I,2)
Z3-V1 (1,3 )+DS( I) 'US( 1,3)
WRITE(6,*) X3,Y3,Z3

120 CONTINUE

STOP 'End of run.'
END '

-65-



, ./ Ip.

Program DoJob.f

This program reads the geometrical data from file rec.dat as set

up by program rspec.f and generates the patch coupling coefficients

needed to form a linear system of equations. The numerical integrations

are performed using Gaussian quadrature rules. Two-dimensional integra-

tions are estimated by combining two one-dimensional integration

schemes, one embedded inside the other. The arbitrary interval formula,

Eq. 25.4.30 from Abramowitz and Stegun 16 was used.

The primary program variable definitions are:

A Test point, loop index. Integer value. Used

for counting and ordering rectangles. .' .

C Evaluation loop index. Integer value. Used for

ordering either conducting or field boundary

rectangles, but not both in a given Do loop. .

Vl(AI) Absolute (x,y,z) position of vertex 1 on rect- .'.-'

angle A. I - 1,2,3 for x,y,z components,

respectively. ,

UN(A,I), UP(A,I) Unit vector directions n, p, and s, respec-
US(AI) .

tively.

DP(A), DS(A) Distance primary and secondary, Dp and D5 , for

rectangle A.

NP(A), NS(A) Number of primary and secondary subdivisions of

rectangle A. -

MODES(C) Number of modes on field boundary C.
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XT(I), XI(I) Test position and evaluation position vari-

ables. I - 1,2,3 for x,y,z components of posi-

tion. Position is computed in terms of local

surface coordinates using Eq. C.5.

TSI(I), W(I) Test point and weight values for 8 point

Gaussian quadrature. Used for numerical approx-

imation of self term coupling coefficients. I -

1, 2, e. , 8.

TS(I), V(I) Test point and weight values for 3 point

Gaussian quadrature. Used for computing all Ped

coupling coefficients except the self term

value. I - 1, 2, 3. %

PHI Complex scalar. Numerical value for *(x,x') .

from Section III• Computed by subroutine GREEN

and depends only on wavelength and distance

between x and x'"

GPHI(I) Complex vector. Numerical value for Vo(x,x')

from Section III. Computed by subroutine GREEN.

I 1,2,3 for x,y,z components, respectively.

H(I) Complex vector. Numerical value for h[i,n] or
+(

h[i,n] from Section III. Computed by subroutine

TEMO for TEMO modes in a rectangular waveguide.

Depends on local field boundary position p,s,

the mode number M, and on N - 1,2 for +,+ direc-

tions, respectively. I - 1,2,3 for p,s,n direc-

tion components.
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ZH( I) Complex vector. Same as H(I) except converted

to x,yz directions by the transformation:

ZH(I) - H(l)UP(I) + H(2)US(I) + H(3)UN(I);
I - 1,2,3

HN1(I) Complex vector. Numerical value for 3/3n bji,n])

from Section III. Also computed by subroutine

TEMO.

ZHN(I) Complex vector. Related to HN(I1) in the same

way ZH(I) is related to H(I).%

ZG Complex scalar. Used to compute and store the

numerical value for

#[a,ijj dci
[c,klJ

ZGN Complex scalar. Used to compute and store the

numerical value for

ifc~l [n * #[,ij ]j dox

ZF(I) Complex vector. Used to compute and store the

numerical value for

Sct[aiI an h[corl If Ia,il]Jh[c~ril
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Program DoJob
IMPLICIT COMPLEX (Z)
INTEGER A,C,NP(I0),NS(l0),MODES(2)
REAL V1(10,3),UN(10,3),UP(10,3),US(10,3),DP(10),DS(I0)
REAL XT(3) ,XI(3) ,W(8) ,TSI(8) ,V(3) ,TS(3)
DIMENSION zF(3),zFI(3),ZFO(3),ZH(3),ZHN(3)
COMPLEX GPHI(3),PHI,H(3),HN(3)

COMMON AA,B3,AK
DATA TPI / 6.283185308/
DATA SMALL / 2.5E-07 /

C Initialize W and TSI arrays for 8 point Gaussian quadrature.
TSI(1-O.9602898565
TSI (2) --0.7966664774
TSI(3)--0.5255324099
TSI(4)--0. 1834346425
TSI(5)--TSI(4)
TSI(6)--TSI(3)
TSI(7)--TSI(2)
TSI(8).-TSI(1)

W( 1)-0. 1012285363
W( 2)-0 .2223810345
W(3)s0.3137066459
W(4)=.0.3626837834
W(5)-W(4)
W(6)-W(3)
W(7)-W(2) .

W(8).W(1)

C Initialize TS array for 3 point Gaussian quadrature.
TS(1) --0. 7745966692

* TS(2)-0.0
TS(3)--TS(1)

V( 1) .0.5555555556
a V(2)s0.8888888889

V(3)-V(l)

* C Read rectangle specification data as generated by rspec.f.
OPEN(10,FILE- rec.dat ,STATUS- old)
REWIND( 10)
READ(10,*) NR,NRC
DO 10 1-1,NR .

READ(10,*) (V1(I,J) ,J-1,3)
READ(10,*) (UN(IJ) ,J-1,3)
READ( 10,') (UP( 1,3) ,J-1,3)
READ(10,*) (US(I,J) ,J-1,3) A

* READ(10,*) DP(I) ,DS(I) ,NP(I) ,NS(I)
10 CONTINUE

CLOSE( 10)

C Open file for vector coupling coefficients.
OPEN(10,FILE-ugreen.dat ,STATUS-'unknown')
REWIND( 10)
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C Enter run data.
WRIE(G,*) 'Enter ratio: working wavelength / cutoff wavelength.,
3.EAD(S,') RATIO
A~nTPI/RATIO
WRITECIC,') RATIO ~i

C Enter number of TI-NO modes at each field plane.
ups- MR-NRC
WRITXCLO,') NVA
DO IS I.1,NFI
WRITE(6*)I'
WRITE(G,') 'For field plane number',I,','
WRITE(G,') 'Enter the number of TI mod**.'
READ(5,*) MODESCI)

is CONTINUE
WRITI(10,*) (MODESt!) ,I-1,t4F5)

C Test point loop over rectangular boundaries.
DO 530 Aw1,NR
WRITE(G,*) 'Doing work for rectangle number',A,'.'
HXXwDP(A)/VLOAT(MP(A))
HY-DS(A)/YLOAT(MS(A))

C Test point loops over patches on rectangle A.
DO 530 Iu1,NP(A)
XX-KXX*(YLOAT(l)-0.5)
DO S30 Ju1,NS(A)
YY-HYY' (FLOAT(3 )-0 .5)

C Compute position of test point.Ol
DO 20 I1.1,3
XT(I)-V(A,11)+XXUP(A1)e+YY*US(A,11)

20 CONTINUE

C Evaluation loop over conducting rectangles.
DO 170 C=1,NRC NR
KX-DP(C)/FLOAT(NP(C))
HY-DS(C)/FLOAT(NS(C))
Y*HX*KY/4. 0

C Evaluation loops over patches on rectangle C.
DO 170 Ku1,NP(C)
X-HX*(FrLOAT(X)-0O.5)
DO 170 L*1,NS(C)
Y*HY(FLOAT(L)-0.5)

C Initialize integration vector.
ZO-CNPLX( 0.0,0.0)
ZGN-CMPLX(0.0,0. 0)

C Test for self term; or common patches.
SUM- 0.0
DO 40 I1.1,3
XI(II).V1(C,II)+X*uP(C,II)+Y*usc,II)
SUM-SUM4(XT( II)-XI (II) )**2

40 CONTINUE
If( C(A.EQ.C) .AND. ((K.EQ.I) .AND. (L.EQ.J) )) .OR. (SUM.LT.SMALL)) THEN
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C Do **lf term Integration using 9 by S point Gaussian scheme.
DO 90 H-1,6
AX-HX*TSI(M)/2.04X
ZGI-CMPLX(0. 0,0.0)

DO 70 N4.1,8
AY-HY*TSI(N)/2 .0+Y

DO 50 I1=1,3
XI(II).VI(C,II)+AX*UP(CII)+AY*US(C,II)

so CONTINUE
CALL GREEN(XT,X1,PHI)
ZGIoZGI+W( N) *PI

70 CONTINUE

ZGuZG.W(N) *ZGI
90 CONTINUE

ELSE
C Do integration using 3 by 3 point Gaussian scheme.

DO 1S0 M-1,3
AX-HX*TS(M1)/2. 0+X
ZGIsCNPLX(0 .0,0.0)

DO 130 N-1,3
AYeHY*TS(N)/2 .04Y

DO 110 11-1,3
XI(II)uV1(C,II)+AX*UP(C,II )+AY*US(C,II)

110 CONTINUE
CALL GREEN(XTXI,PII)
CALL GGREEN(XT,XI,GPHI)
ZGIsZGI.V( N)'PHIl

Z-CMPLX(0.0,0.0)*
DO 120 11-1,3
Z-Z+UN(C,II )*GPHI(II)

120 CONTINUE
ZGNImZGNI+V(N)*Z

130 CONTINUE

ZG-ZG+V(M)*ZGZ
* ZGN-ZGN+V(M)*ZGNI
* 150 CONTINUE

ENDIF

ZG-F'ZG *..

ZGNUF*ZGN
WRITE(10,*) ZG,ZGN

170 CONTINUE II

C Evaluation loop over field boundary rectangles.
DO 350 C-(NRC+1),NR
AA-DP(C)
BB-DS(C)

* HXoAA/FLOAT(NP(C))
HY-BB/FLOAT(NS(C))
F.NXtIIY/4.0
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C Evaluation loop over modes.
IC-C-NRC
DO 350 MN-1,MODES(IC)

C Initialize integration sum.
DO 190 1Ia1,3
ZF( II)-CNPLX(0.0.0.0)

190 CONTINUE

C Start summing loops over patches on field boundary C.
DO 340 IA-1,NP(C)
X-HX*(FLOAT( IA)-0 .5)
DO 340 3A-l,NS(C)

Y-HY*(FLOAT(JA)-0 .5)

C Initialize patch Integration.
DO 200 1I.1,3
ZFO(II )-CMPLX(0.0,O.0)

200 CONTINUE

C Test for self patch.
IF( (A.EQ.C) .AND. ((I.EQ.IA) .AND. (J.EQ.JA))) THEN

C Do self term integration using 8 by 8 point Gaussian scheme.
DO 260 Mw1,8
AX-HX*TSI(M)/2.0+X

DO 210 11-1,3
ZFI(II)-CHPLX(0.0,0.0)

210 CONTINUE

DO 240 Nw1,9
AY-HY*TSI(N)/2.0.Y

DO 220 11*1,3 .

XI(II).VI(C,II)+AX.UP(C,II)+AY*US(C,II)
220 CONTINUE

C Evaluate the Integrand.
CALL GREEN(XT,XI,PHI)
CALL GGREEN(XT,XI,GPHI)
CALL TEMO(AX,AY,AA,BB,RATIO,2 ,MM,H,HN) V

Z-CMPLX(0.0,0.0)
DO 230 11-1,3
Z-Z+UN(C,II )*GPHI( II)
ZH(II)-H(1)*UP(C,II)+H(2)*US(C,II)+H(3)*UN(C,II)
ZHN(II).HN(1)*UP(C,II)+KN(2)*US(C,II)+KN(3)*UN(C,II)

230 CONTINUE
DO 235 11-1,3

235 CONTINUE S
240 CONTINUE

DO 250 11-1,3%%%
ZFO(II).ZFO(II)+W(M)*ZFI(II)

250 CONTINUE
260 CONTINUE
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ELSE
C Do integration using 3 by 3 point Gaussian scheme.

DO 320 M-1,3
AX=HX*TS(M)/2.0+X

DO 270 11-1,3
ZFI (II )-CNPLX(0. 0,0.0)

270 CONTINUE

DO 300 N-1,3
AY.IIY*TS(W)/2 .0+Y

DO 280 11-1$3
XI(II)-V1(C,II)+AX*UP(C,II)+AY*US(C,II)

280 CONTINUE

C Evaluate the integrand.
CALL GREEN(XT,XI,PHI)
CALL GGREEN(XT,XI,GPHI)
CALL TEMO(AX,AY,AA,BB,RATIO$2 ,MN,H,HN)

Z-CHPLX( 0.0,0.0)
DO 290 11-1,3
Z-Z4UN(C, II )GPI(II)

ZH(I)-H()*UPCIl+H()*USC$Il+H(3*UN(,II

ZH( I)-H(1)*UP(C,I)H(2)*US(C,I )+HN(CII)CII
290 CONTINUEN1*P(,1+I()*SCI +N()U(,

DO 295 11=1$3

295 CONTINUE
300 CONTINUE

DO 310 11-1,3 ?

ZFO(II)OZFO(II)+V(M)*ZFI(II)
310 CONTINUE
320 CONTINUE

ENDIF

C Sum up values from each patch integration.
DO 330 11=1$3
ZF( II)-ZF( II )+F*ZFO( II)

330 CONTINUE
340 CONTINUE

350 CONTINUE

C Compute forcing term for each test point.
Cu NRC+ 1
AA-DP(C)

IB-DS(C)
IX-AA/FLOAT(NP(C))
IYwBB/FLOAT(NS(C))
F-KX*HY/4 .0

C Initialize integration sum.
DO 370 11-1,3
ZF(II )-CMPLX(0.0,0.0)

370 CONTINUE
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C Start summing loops over patches on field boundary C.
DO 520 IA-1,NP(C)
XoHX*(FLOAT( IA)-0 .5)
DO S20 JA"1,NS(C)
YnKY*(FLOAT(JA)-0.S)

C Initialize patch integration.
DO 380 11-1,3
ZFO(II )-CMPLX(0.O,0.0)

380 CONTINUE

C Test for self patch.
IF((A.EQ.C) .AND. ((I.EQ.IA) .AND. (J.EQ.JA))) THEN

C Do self term integration using 8 by 8 point Gaussian scheme.
DO 440 M-1,8
AX-HX*TSI(N)/2.04+I

DO 390 11-1,3
ZFI(11)-CMPLX(O.0.0.0)

390 CONTINUE

DO 420 N-1,8
AY-KY*TSI(N)/2.0+Y

DO 400 11-1,3
XI(II)-VI(C,1I)+AX*UP(C,II)+AY*US(C,II)

400 CONTINUE

C Evaluate the integrand.
CALL GREEN(XT,XI,PHI)
CALL GGREEN(XT,XI,GPHI)
CALL TENO(AX,AY,AA,BBRATIOI,1 ,H,HN) ..

Z-CNPLX(0. 0,0.0)
DO 410 11-1,3

ZH(II)-H(1 )*UP(C,II )+H(2)*US(C,II)4H(3)*UN(C,II)
ZHN( Il).HN( 1)*UP(C,II )*HN(2)*US(C,II )+HN(3)*UN(C,II)

410 CONTINUE
DO 415 11-1,3 .

ZFI(Il)-ZFI(1I)4+W(N)*(PHI*ZHN(II)-Z*ZH(II)) ..-

415 CONTINUE
420 CONTINUE

DO 430 11-1,3
ZFO( II)-ZFO( II )4W(i)*ZFI (II)

430 CONTINUE
440 CONTINUE

ELSE
C Do integration using 3 by 3 point Gaussian scheme.

DO 500 Mw1,3
AXsHX*TS(M)/2 .0+X

DO 450 11-1,3
ZFI( II )-CMPLX(0.0 ,0 .0)

450 CONTINUE

DO 480 N-1,3

AY-HY*TS(N)/2 .0+Y
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DO 460 11-1,3
XI(II).V1(C,II)+AX*UP(CII)+AY*US(C,II)

460 CONTINUE

C Evaluate the Integrand.
CALL GREEN(XT,X1,PHI)
CALL GGREEN(XT,XI,GPHI)
CALL TEMO(AX,AY,AA,BB,RATIO,1,1,H,HN)

Z-CMPLX(O.0,O.0)
DO 470 11-10,%
ZoZ+UN(C,1I)*GPHI(II)
ZH(II)-H(1 )*UP(C,II )44(2)*US(C,II)+H(3)*UN(C,II)
ZKN(II)-HN(tJ*UP(C,11)+HN(2)*US(CII).HN(3)*UN(C,II)

470 CONTINUE
DO 475 11w1,3N

475 CONTINUE
480 CONTINUE

DO 490 11-1,3
zroC iI)-zFO(rI)4.v(m)*zFI( iz)

490 CONTINUE -

500 CONTINUE
ENDIF

C Sum up values of patch integrations.
DO 510 11-1,3
ZF(II).ZF(II)4.F*ZFO( II)

N510 CONTINUE
520 CONTINUE

WRITE(10,*) (ZF(II) ,II-1,3)
530 CONT!NUE

C Compute and store magnetic field variation on field rectangle C.
DO 550 C-(NRC+1),NR

* AA-DP(C)
BB-DS(C)
KX-AA/FLOAT(NP(C))
HY-BB/FLOAT(NS(C))

C Loop over modes.
IC-C-NRC
DO 550 MM-1,MODES(IC)

C Loops over points on rectangle C.
DO 550 IA-1,NP(C)
X.HX*(FLOAT( IA)-0 .5)
DO 550 JA-1,NS(C)
YwHY*(FLOAT(JA)-0.5)

CALL TEMO(X,Y,AA,BB ,RATIO,2 ,MM ,H,HN)
DO 540 11-1,3 %
ZH(II )-H(1 )*up(C,riI)+H(2)*US(C,II )+H(3)*UN(C,II)

540 CONTINUE
WRITE(10,*) (Z14(II) ,Il-i ,3) ~Y

550 CONTINUE

-75 -

%

t~



C Compute and store incident magnetic field variation.
C-NRC+1
AA-DP(C)
BB-DS(C)
HX-AA/FLOAT(NP(C))
HY-BB/FLOAT(NS(C))

C Loops over points on rectangle C.
DO 570 IA-INP(C)
X-HX*(FLOAT(IA)-0 *5)
DO 570 JA-1,NS(C)
Y-HY*(FLOAT(JA)-0 .5)

CALL TEMO(X,Y,AABB,RATIO, 1,1 ,H,HN)
DO 560 11-1,3
ZH(II)-H(1)*UP(C,II)+H(2)*US(C,II)+H(3)*UN(C,II)

560 CONTINUE
WRITE(10,*) (ZH(II) ,II-1,3)

570 CONTINUE 1'~.

CLOSE(10)
STOP 'End of Run.'
END
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SUBROUTINE GREEN(XT,XI,PHI)
REAL XT(3),XI(3)''
COMPLEX PHI,Z
COMMON A,B,AK
DATA FPI /12.56637062/
Z--CMPLX(0.0,1 .0)
SPAN-a .0
DO 10 1.1,3
SPAN-SPAN+(XT(I )-XI(I) )**2

10 CONTINUE
SPAN-SQRT (SPAN)
Z-Z*AK*SPAN
Z-CEXP(Z)
PHI-Z/(FPI*SPAN)
RETURN
END

SUBROUTINE GGREEN(XT,XI ,GPHI)
REAL XT(3),XI(3),D(3)
COMPLEX GPHI(3),Z,ZJ -4

COMMON A,B,AK
DATA FPI /12.56637062/ 4.%

ZJ-CMPLX(0. 0,1.0)
SPSQ-0. 0
DO 10 1-1,3 >V

D(l)-XT(I)-XI(I)
SPSQ=SPSQ+D( I) **2

10 CONTINUE
SPAN-SQRT (SPSQ) 4
Z--ZJ*AK*SPAN
Z-CEXP(Z)o%%
ZuZ/(SPSQ*FPI)
SPAN-i .0/SPAN
ZJ-CMPLX( SPAN ,AK) -
z-Z*ZJ
DO 20 1-1,3
GPHI (I)-Z*D( I)

20 CONTINUE
RETURN
END

-77 -

' ii;% %



SUBROUTINE TEMO(X,Y,A,B,WL,N,M,H,HN)
C
C This subroutine computes the magnetic field components for TE-MO
C modes in a rectangular waveguide. The-mode functions are normalized
C so that each mode carries one watt of power above cutoff and one watt
C reactive ( Inductive ) below cutoff. The derivative of the magnetic
C field components in the direction of the outward normal are also
C computed.
C

IMPLICIT COMPLEX (Z)
COMPLEX H(3),HN(3)
DATA PI,RMOE / 3.141592654, 376.730/
ZJ-CMPLX(O.O,1.0)

AX-2 . *PI/WL
AKSQ-AK**2

~~1 GMuPI*FLOAT(M)/A

% GMSQuGM**2
WLCO-2 .0*A/FLOAT(M)

IF(WL.LT.WLCO) THEN
ZNEWul .0
ARG-AKSQ-GMSQ
ZB-SQRT(ARG)

ELSE
Z NEW Z J
ARG-GMSQ-AKSQ
ZB--ZJ*SQRT(ARG)

ENDIF

ZBC-CONJG(ZB)
ZA-4 . 0ZNEW*GMSQ/(AK*ZBC*A*B*RMOE)
AMO-REAL(CSQRT(ZA))
GMX-GM*X

H( 3)-AMO*COS(GMX)
HN(3)--ZJ*ZB*H(3) ./

IF(N.EQ. 1) HN(3)--HN(3)

H(2)-CMPLX(0.0,0.0)
HN 2 )-CMPLX( 0.0,0.0)

H( 1) ZJ*ZB*AMO*SIN(GMX) /GMT
HN(l1)-.-ZJ*ZB*H( 1)
IF(N.EQ. 1) H( I)--H( 1)

RETURN
END
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Program DoMore.f

This program reads the geometrical data from file rec.dat as set

up by program rspec.f and the patch coupling data from file green.dat as

generated by dojob.f. The overdetermined system of equations is solved

in two coupled parts. The type A equations, equations due to testing on

the conducting surface, are partially solved for the pulse function

amplitudes while holding the mode amplitudes fixed. That is, a square

system of equations is built from Eqs. 23, 24, and 25 of the form A1x1 =

b I where b I is a linear function of mode amplitudes. Next, the type B

equations, equations due to testing on the field boundaries, Eq. 26, are

partially solved for the mode amplitudes while holding the pulse func-

tion amplitudes fixed. Here we have A2x2 - b2 , where b is a linear
2%2 ' 2

function of the pulse function amplitudes. The overall iteration takes

the following form:

1. Hold the mode amplitudes fixed. e

2. Make one ART update on the type A system, AIx= b1 .

3. Hold the pulse amplitudes fixed.

4. Make one ART update on the type B system, A2x2  b2."

5. Enforce the conservation of power constraint on the mode

amplitudes, Eq. 28.

6. Repeat until the solution vector from the type B equations

changes by less than 2 percent.

The ART update on the type A equations is done using subroutine ARTA.

This subroutine uses a relaxation factor R that is between 0 and 1. For ,

the asymmetric iris data in Section IV, R = 1, 1/2, 1/4, 1/8, with 10
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iterations at each value starting with 1. The update on the type B

equations was done using subroutine ARTB with no relaxation; i.e., R

1. Conservation of power was enforced by subroutine ECPMO.

The primary program variable definitions are:

A, C Test point and evaluation point indices, respec-

tively.

Vl(A,I) Absolute (x,y,z) position of first vertex on

rectangle A. I - 1,2,3 for x,y,z components,

respectively.

UN(A,I), UP(A,I) Unit vector directions n, p, and s.
US(A,I)

DP(A), DS(A) Distance primary and secondary for rectangle A. %

NP(A), NS(A) Number of primary and secondary subdivisions on

rectangle A. -

MODES(C) Number of modes on field boundary C. .

NR Total number of rectangles enclosing the volume. %

NRC Number of conducting rectangles out of the

total. .'

NFB Number of field boundary rectangles.

RATIO Real value. Ratio of the working wavelength to

the cutoff wavelength of the dominant mode on

field boundary number 1.

LA, LC Integer values. Linear index, used for counting

and ordering patches on rectangles A, C. Corn- *.p'..

puted from a primary index I and a secondary

index J by the following sequence:
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DO @ I-1,NP(A)
M-NS(A)*(I-1)
DO @ J-1,NS(A)
LA-J+M

CONTINUE

H(C,M,LC,I) Complex array. Magnetic field distribution due

to mode M at point LC on field boundary rect-

angle C. I - 1,2,3 for x,y,z components.

Computed by dojob.f under variable name ZH(I).

HI(LI,I) Complex array. Magnetic field distribution due

to the incident mode at point Ll on field bound-

ary rectangle number 1. I - 1,2,3 for x,y,z

components. Computed by dojob.f under variable

name ZH(I).

ZG(A,LA,C,LC) Complex array. Coupling from patch LC on rect-

angle C to point LA on rectangle A. Its value

is computed by dojob.f under the variable name

ZG.

ZGN(A,LA,C,LC) Complex array. Coupling from patch LC to point

LA. Value computed by dojob.f under variable %

name ZGN.

ZF(A,LA,C,M,I) Complex array. Coupling from mode M on field

rectangle C to point LA on rectangle A. I =

1,2,3 for x,y,z components. Computed by dojob.f

under variable name ZF(I).",,.

8%*. ,"
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ZFI(A,LA,I) Complex array. Coupling from the incident or

driving mode in field rectangle number 1 to

point LA on rectangle A. I - 1,2,3 for xy,z

components. Computed by dojob.f under variable

name ZF(I).

ZH(C,LC,I) Complex array. Solution vector for pulse func-

tion amplitudes. Value for patch LC on rect-

angle C, I - 1,2,3 for Hp, H8 , and H'.
p 8 n

ZA(C,M) Complex array. Solution vector for mode ampli-

tudes, mode M on field boundary C.

ZHC(C,LC,I) Complex array. Work space, coupling to equation

LA from the pulse amplitude coefficient LC on

rectangle C, I - 1,2,3 for coupling H p H

and H', respectively.n

ZAC(C,M) Complex array. Work space, coupling to equation

LA from the amplitude of mode M on field bound-

ary C.

DA(C,LC,I) Real array. Contains denominator terms needed

by the ART algorithm for the type A equations.

Used to update ZH(C,LC,I). Computed by first

access of subroutine ARTA.

DB(C,LC,I) Real array. Contains denominator terms for type
S. ,

B equations. Used to update ZA(C,M). Computed

by first access of subroutine ARTB.
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Program Do~ors

IMPLICIT COMPLEX (Z)
INTEGER A,C
REAL Vl(lO,3),UP(l0,3) ,US(10,3),UN(10,3) ,DP(l0) ,DS(l0)
DIMENSION ZF(10,40,2,8,3) ,ZFI(1O,40,3),ZOLD(2,S)
COMPLEX H(2,8,40,3) ,HI(40,3)
COMMON / Bi, / ZG(10,40,8,40),ZGN(10,40,8,40)
COMMON / B2 / ZH(8,40,3),ZHC(8,40,3),DA(8,40,3)
COMMON / B3 / ZA(208),ZAC(2,9),DB(2,40,3)
COMMON / B4 / NP(10),NS(10),NRC,NFB,MODES(2)

C Read in rectangle specification data as generated by rspec.f
OPEN(10,FILE-urec.dat',STATUSu1d')
REWIND( 10)
READ(10,*) NRNRC
DO 10 I-1,NR :

READ(10,*)~- (V(,pJ13

READ(10,*) (V1(I,3) ,J-1,3)
READ(10,*) (UN(I,3) ,3-1,3)
READ(10,*) (UP(I,J) ,J-1,3)

READ( 10 ,*) DP(I) ,DS( I) ,NP( I) ,NS( I)
10 CONTINUE

CLOSE( 10)

C Read greens function data as generated by dojob.f -

OPEN(10,FILEu'green.dat',STATUS-'old')
REWIND( 20)
READ(10,*) RATIO
READ(10,*) NFB
READ(10,') (MODES(I) ,I-1,NFB)

DO 50 A-i, NR
DO 50 I-iNP(A)
MM-NS(A)*( 1-1)
DO 50 J-1,NS(A)
LA. 3+MM

DO 30 C-1,NRC .

DO 30 K-1,NP(C)
M-NS(C)*(K-1)
DO 30 Lol)NS(C)
LCeL+M
READ(10,*) ZG(A,LAC,LC) ,ZGN(A,LA,C,LC)

30 CONTINUE

DO 40 C-1,NFB
DO 40 M-1,MODES(C)
READ( 10,*) (ZF(ALA,C,MII) ,II-1,3)

40 CONTINUE

READ( 10, *) (ZFI (ALA,II) ,II-1,3)
50 CONTINUE

DO 60 C-1,NFB
IC=C+NRC
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DO 60 I=1,NP(IC)-
1HMNS( IC)*( I-i)
DO 60 J1,pNS(IC)0
LC-J+M
READ(10,') (H(C,N,LC,1I) ,II-1,3)

60 CONTINUE

ICu NRC+1 1r
DO 70 I'1,NP(IC) 

WP

H-USC IC)*( I-i) 
J

DO 70 3-1,NS(IC)
LC-J4H
READ(10,*) (KI(LC,II) ,II-1,3)

70 CONTINUE

CLOSE(lO)
WRITE(6,*) 'Done reading data files.,

C Initialize unknown vectors.
DO 80 C=1,NRC
DO 80 I=1,NP(C)
N-NS(C)*(I-1)
DO 80 31 ,NS(C) ib

LC=J+M
DO 80 11-1,3
ZK(C,LC,II )oCMPLX(0.0 10.0)

s0 CONTINUE

DO 90 C-1,NFB ..

DO 90 M-1,MODES(C)
ZA(C,K)=CMPLX(0.0,0.0)
ZOLD(C 'N)-CIIPLX(0.0,0.0)

90 CONTINUE

C Initialize iteration control.
ITMAXa1O
RESIIAX-S .OE-06
NEQimO
DO 95 A-1,NRC
NEQ1wNEQ1+NP(A)*NS(A)

95 CONTINUE
NEQ2-0 ,

DO 100 A-(NRC.1),tIR
NEQ2uNEQ2+NP(A)*NS(A)

100 CONTINUE
WRITE(6,*) 'Number of complex vector equations -',NEQ1,'+',NEQ2

110 ITal
WRITE(6,*) 'Enter relaxation factor.-*
READ(S,*) RLAX

120 RSUMnO.0

C Start ART iteration for type A equations.
C Test loops over patches on conducting rectangles.

DO 220 A-1,NRC
DO 220 I-1,NP(A) ~
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DO 220 J*1,NS(A)

LA%,J+MNL.

C Compute primary component LHS.
ZLHS=CMPLX(O.0,0.0)
DO 130 11-1,3
ZLHSoZLHS+UP(AI )*ZYI (A,LA, II)
DO 130 C.1,NFB
DO 130 NN-1,NODES(C)
ZLHS-ZLHS+ZA(CNN)*UP(A,II)*ZF(A,LA,C,N4,11)

130 CONTINUE

C Compute coefficients coupling to the primary term.
DO 150 C-1,NRC
7100.0
F2.0 .0
F3-0.0
DO 140 11-,1,3
F1.F1+UP(A,II)*UP(C,II)
F2-F2+UP(A,1I)*US(C,II)
F3oF3+UP(A,II)*UN(CII)

140 CONTINUE
DO 150 K-1,NP(C)
M-NS(C)*(K-1)
DO 150 Lw1,NS(C)
LC-L+M l
ZHC(C,LC,1)-F1'ZGN(A,LA,C,LC)
ZKC(CC ,LC ,2 ) 32*ZGN (A, LA ,C ,LC
ZHC(C,LC,3)n-F3*ZG(A,LA,C,LC) .. 1

150 CONTINUE
ZHC(A,LA,1)-ZHC(A,LA,1)+CMPLX(0.5,0.0).

C Do update to vector ZH.
CALL ARTA(AJLA,1,IT,RSUM,RLAX,ZLHS)

C Compute secondary component LHS.
ZLHS-CtIPLX(0 .0,0.0)
DO 160 11-1,3
ZLHS-ZLHS+US(A,II)*ZFI(A,LA,II)
DO 160 C-1,NFE
DO 160 NM-1,MODES(C)
ZLHS.ZLHS+ZA(C,NM)*US(A,II)*ZF(A,LA,C,NM,II)

160 CONTINUE

C Compute coefficients coupling to the secondary term.
DO 180 C-1,NRC
71-0.0 %-,
F2-0.0
F3-0.0
DO 170 11-1,3
FloF1+US(A,lI)*UP(C,II)
F2.F2+US(A,II)*US(C,II)
F3-F3+US(AII )*UN(CII) : t

170 CONTINUE
DO 180 K-1,NP(C)
M*NS(C C)*(CK-1)
DO 180 L-1,NS(C)
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LCnL+N
ZKC(CsLC,1 )-Fl'ZGN(ALACLC)
ZHC(C,LC,2)-F2*ZGN(A,LA,C,LC)
ZIC(C,LC,3)--F3*ZG(ALAC,LC)

180 CONTINUE
ZHC(AsLA,2)-ZHC(A,LAs2)+CMPLX(0.5,0.0)

C Do update to vector ZH.
CALL ARTA(A,LA,2,ITRSUK,RLAXZLHS)

C Compute normal component LHS.
ZLHS-CMPLX(0.OsO.0)
DO 190 11-1,3
ZLHSnZLHS+UN(A,II )*ZFI(A,LA,II)
DO 190 C-1,NFB .

DO 190 NM-1,MODES(C)
ZLHS-ZLHS+ZA(C,NM)*UN(A,II)*ZF(A,LA,C,NI,II) "

190 CONTINUE

C Compute coefficients coupling to the normal term.
DO 210 C-I,NRC
1130.0
F2-0 .0 4
F3-0.0
DO 200 11-1,3
FIF1I+UN(A, II)*UP(C, II)
F2-72+UN(A,II )*US(CII)
F3aF3+UN(A,II )*UN(C,II)

200 CONTINUE
DO 210 K-1,NP(C) . .

M-NS(C)*(K-1)
DO 210 L-1,NS(C)
LCwL+M
ZHC(C,LC,1 )-Fl*ZGN(A,LA,CLC)
ZHC(C,LC,2 )=F2*ZGN(A,LA,C,LC) ,
ZHC(C,LC,3).-F3*ZG(A,LA,C,LC)

210 CONTINUE

C Do update to vector ZH.
CALL ARTA(A,LA,3 ,IT,RSUM,RLAX,ZLHS)

220 CONTINUE
RAIuRSUt4/FLOAT(3*NEQ1)

C Start ART iteration for type B equations.
C Test loops over patches on field boundaries.
230 RSUM=O.0

DO 300 A-(NRC+1),NR
IAwA-NRC
DO 300 I-I ,NP(A)
MMwNS(A)*( I-1)
DO 300 J-1,NS(A)
LAwJ+MM

C Compute X component LHS. *
ZLHS-ZFI(A,LA,l)
IF( IA.EQ. 1) ZLHS-ZLHS-(0.5S)*HI (LA,1)
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DO 240 Cwl.,NRC
DO 240 I-l,NP(C)
NS (C ) *(K-I.)

DO 240 L-1,NS(C)
LC=L+M
ZLH.SZLHS+UN(C,)*ZH(C,LC,3)*ZG(A,LA,C,LC) d
ZLHS-ZLHS-UP(C,I)*ZH(C,LC,)')ZGN(A,LA,C,LC)
ZLHS-ZLHS-US(CI )*ZH(CLC,2 )*ZGN(AsLA,C,LC)

240 CONTINUE 4 6

C Compute coefficients coupling to the X component.
DO 250 Cwl,NFB
DO 250 NM-1,MODES(C)
ZAC(C,NM)--ZF(A,LA,C)NM,1)P

250 CONTINUE
DO 255 NMolMODES(IA)
ZAC(IA,NM)-ZAC(IA,NM)N(O.5)*H(IA,NM,LA,l)

255 CONTINUE

C Do update to vector ZA.
CALL ARTB(IA,LA,1,IT,RSUM,ZLHS)

C Compute Y component LHS.
ZLHS-ZFI(A,LA,2)
IF( IA.EQ.1) ZLHS-ZLHS-(0.5)*HI(LA,2)
DO 260 C-l.,NRC
DO 260 K-1,NP(C)
MoNS(C)*(K-1)
DO 260 L-1,NS(C)
LC-L+M
ZLHS-ZLHS+UN(C,2)*ZH(C,LC,3)*ZG(A,LA,C,LC)
ZLHS-ZLHS-UP(C,2)*ZH(C,LCI)*ZGN(A,LA,C,LC)
ZLHS.ZLHS-US(C,2)*ZH(CLC,2)*ZGN(A,LAC,LC)

260 CONTINUE -

C Compute coefficients coupling to the Y component.
DO 270 C-1,NFB
DO 270 NM=1,MODES(C)
ZAC(CNM)--ZF(A,LAC,N4,2)

*270 CONTINUE
DO 275 NM-1,MODES(IA)
ZAC(IA,NM)-ZAC(IANM)+(0.5)*H(IANM,LA,2)

275. CONTINUE

C Do update to vector ZA.
CALL ARTB(IA,LA,2,IT,RSUMZLHS)

C Compute Z component LBS.
ZLHS-ZFI (A ,LA ,3)
IF(IA.EQ. 1) ZLHS-ZLHS-(O .5)*HI(LA,3)
DO 280 CulNRC

* MoNS(C)*(K-l.)

DO 280 L-1,NS(C)
LCwL+M
ZLHS-ZLHS+UN(C,3)*ZH(C,LC,3 )*ZG(A,LA,C,LC)
ZLHS-ZLHS-UP(C,3)*ZH(C,LC,l.)*ZGN(ALA,C,LC)
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ZLHS-ZLIIS-US(C,3 ) ZN (C ,LC ,2 )ZGN(A, LA,C ,LC )
280 CONTINUE

C Compute coefficients coupling to the Z component.
DO 290 C-1,NFB
DO 290 NM-1,NODES(C) .

ZAC(C,NM)--ZI(A,LA,C,NM,3)
290 CONTINUE

DOAC9 ,~m,. )H(INNLA,)
ZCIANM)-ZAC(IANN)+(0.5)*(ANA

295 CONTINUE

C Do update to vector ZA.
CALL ARTB(IA,LA,3,ITRSUM,ZLHS)

300 CONTINUE -. 1

RA2-RSUM/FLOAT( 3*NEQ2)
RA3- (RA1+RA2 3/2.0

C Enforce conservation of power.
4 CALL ECPMO(RATIO,DP)

C Compute fraction change in solution.
SNUMaO .0
SDEN-0 .0
DO 305 C-I,NFB
DO 305 I-1,MODES(C)

4- SDEN-SDEN+CABS(ZA(C,I))
ZDIFF-ZOLD(C,I )-ZA(C,I)
SNU1I-SNUM+CABS(CZDIFF)
ZOLD(C,I )-ZA(C,I)

305 CONTINUE
SNUM-SNU14/SDEN
WRITE(6,*) IT,': Ave error -',RA3,' Soln Chng *',SNUM

IF(RA1.LE.RESMAX) GOTO 320
IF(IT.GE.ITMAX) GOTO 310
IT.IT+l

% GOTO 120

'4310 WRITE(6,*) 'Hit ITMAX limit; for more its type "I", otherwise "0".'
READ(5,*) NANS r
IF(NANS.EQ.1) GOTO 110 '4.

320 OPEN(10,FILE-udomore.dat',STATUS-'unknown '..4
WRITECIO,*)
WRITECIO,') RATIO
WRITE(lO,*) 'EA -',RAI,' EB -*,RA2
DO 330 1-1,NFB
DO 330 J-1,MODES(I)
WRITE(10,*) 1,3,ZA(I,J)

*330 CONTINUE
CLOSEC 10)

STOP 'End of Run.'-
END
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SUBROUTINE ARTA(A,LA,N,ITEST,RSUM,FAC,ZLHS)
IMPLICIT COMPLEX (Z)
INTEGER A,C

COMMON / B2 / ZH(8,40,3),ZHC(8,40,3),DA(8,40,3)
COMMON / B4 / NP(10),NS(10),NRC,NFB0MO)ES(2)I

C Check to see if this is a first pass access.
IF(ITEST.GE.2) GOTO 20

C Compute denominator term. :
DA(A,LA,N)-0.0
DO 10 C-1,NRC
DO 10 K-1,NP(C) __

M-NS (C) *( K-1)
DO 10 L-1,NS(C) , -..

LC-L+M
DO 10 11-1,3
Z-ZHC(C,LC,II) .p

DA(A,LA,N)uDA(A,LA,N)+REAL(Z*CONJG(Z))
10 CONTINUE

C Compute the real part of the residual.
20 ALFA-0.0

DO 30 C-1,NRC
DO 30 K-1,NP(C)
M-NS(C)*(K-1)
DO 30 L-INS(C)
LC=L+M
DO 30 11-1,3
ZA.ZHC(C,LCII)
ZY-ZH(C, LC, II)
RA-REAL(CZA)
AA-AIMAG( ZA)
RY-REAL(CZY)
AY-AIMAG( ZY)
ALFAmALFA+RA*RY-AA*AY

30 CONTINUE
ALFA-ALFA-REAL(CZLHS)
RSUM-RSUM+ABS(CALFA)

C Update the vector ZH.
ALFA-FAC*ALFA/DA (A, LA,N)
ZA-ZHC(A,LA,N)
ZY-ZH(A,LA,N)
RA-REAL(ZA)
AA-AIMAG( ZA)
RY-REAL(CZY)
AY-AIMAG( ZY)
RYinRY-ALFA*RA
AY-AY+ALFA*AA
ZH(A,LA,N)-CMPLX(RY JAY)

C Compute the imaginary part of the residual.
BETA-O.0
DO 50 C-1,NRC
DO 50 K-1,NP(C)
M-NS (C )* (K-1)
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DO 50 LulNS(C)
LC-L+K
DO 50 11.1,3
ZA-ZHC(CLC, II)
ZY-ZH(CLCII)
RA-REAL(CZA)
AA-AIMAG( ZA)
RY=REAL(CZY)
AY-AIHAG( ZY)
BETA- BETA+AA*RY4R.A*AY

50 CONTINUE
DETA-BETA-AINAG( ZLHS)
RSUM=RSUN+AIS(CBETA)

C Update the vector ZH.
BETAwFAC*BETA/DA( A LA ,N)
ZA. ZHC(CA ,LAN )
ZY. ZH(CAlLAN )
RA-REAL(CZA)
AA=AIMAG( ZA)
RY-REALCZY)
AYOAIMAG( ZY)
RY-RY-BETA*AA
AY-AY-BETA*RA
ZH(ALAlM)-CMPLX(RYsAY)

RETURN
END

-90-e

74 -Y re -o
N%'%



SUBROUTINE ARTB(IAxLAN2ITESTsRSUNZLHS)
IMPLICIT COMPLEX (Z)
INTEGER C
COMMON / B3 / ZA(20S),ZAC(2,S)2DB(2240,3)
COMMON / 34 / HNI(1)ONS(10)ONRCU3,MODES(2)
DATA FAC / 1.0 /

C Check to see if this Is a first pass access.
IF(ITEST.GE1 2) GOTO 20

C Compute denominator term.
DB(IApLA2N)w-00
DO 10 C-19NUI
DO 10 NM-1,MODESCC)
Z-ZAC(CNM)
DB(IALAsN)inDB(IALAN)+REALCZ*CONJG(Z))

10 CONTINUE

C Compute the real part of the residual.
20 ALFA-0.0

DO 30 C-lNFB
DO 30 NM-1,MODES(C)
ZB-ZAC C CNM)
ZY-ZA(C,NM)
RA-REAL(CZB)
AA-AIMAG( ZB)
RY-REAL(CZY)
AY-AIMAG( ZY)
ALFAinALFA+RA*RY-AA*AY

30 CONTINUE
ALFA-ALFA-REAL(CZLHS)
RSUM-RSUM+ABS (ALFA)

C Update the vector ZA.
ALFA-FAC*ALFA/DB( IA,LA,N)
C-IA
DO 40 HM-1,MODES(C)
ZB-ZAC(C ,NM)
ZY-ZA(CNM)
RA-REAL(ZB)
AAmAIMAG( ZB)
RY-REAL(ZYV)
AY-AIMAG( Vi)
RY-RY-ALFA*RA
AY-AY+ALFA*AA
ZA(C#NM)-CHPLX(RYAY)

40 CONTINUE

C Compute the imaginary part of the residual.
BETA- 0.0
DO S0 C-19NFB
DO S0 NM-lMODES(C)
ZB-ZAC(CNH)
ZY ZA(CC M )
RA=REAL( ZB)
AA-AIMAG( ZB)
RY-REAL(CZY)
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AY;-AIHAG( zy)
F BETA- BETA+AA*RY+RA*AY

50 CONTINUE
BETA- BETA-AINAG( ZLHS)
RSUMuRSUN*ABS(CBETA)

C Update the vector ZA.
BETAi.FAC*DETA/DB( IApLAN)
C-IA
DO 60 NM-lKODES(C)
ZD-ZAC(C NH)
ZYnZA(CoNM) -.

RA-REAL CZI)
AA-AIMAG( ZB)
RY-REAL(CZY)
AY-AIHAG(ZY)
RY-RY-SETA*AA
AY-AY-BETA*RA
ZA(CNH)-CMPLX(RYpAY)

60 CONTINUE

RETURN
END
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SUBROUTINE ECPMO (WL, DP)
IMPLICIT COMPLEX (Z)
DIMENSION DP(10) ,NH(2)
COMMON / 33 / ZA(29S),ZAC(2qS),DB(2040,3)
COMMON / 34 / NP(l0)*NS(10)JsNRCaNFD,MODES(2)

C Wind out how many modes can propagate at each field plane.
DO 10 I-lamps
lAs NRC+ I
AsDPC IA)
VM(I)uIFIX(2.O*A/WL)
IWCNM(I).GT.NODES(I)) NM(I)-MODES(I)

10 CONTINUE

C Compute the adjustment factor.
VACua .0
DO 20 IslaNFS
IUCNM(I).EQ.0) GOTO 20
DO 20 J-1,NM(I)
ZuZA(I#J)
FAC-FAC+REAL(CZ*CONJG (Z))

20 CONTINUE
FAC.SQRT( FAC)

C Adjust the solution vector to force conservation of power.
DO 30 Iw1,N73
IF(NM(I).EQ.0) GOTO 30
DO 30 J-ltVMCI)
ZACIqJ)uZA(ISJ)/'AC

30 CONTINUE

RETURN
END
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